• Title/Summary/Keyword: 사격순서

Search Result 12, Processing Time 0.029 seconds

An Optimization of the Planned Target Sequencing Problem Using Scheduling Method (스케줄링을 이용한 계획표적 사격순서의 최적화 방안)

  • Hwang, Won-Shik;Lee, Jae-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.105-115
    • /
    • 2007
  • It is essential to give a fatal damage to the enemy force by using prompt and accurate fire in order to overcome the lack of artillery force. During the artillery fire operations, minimizing the firing time will secure the adapt ability in tactical operation. In this paper, we developed a mathematical model to schedule the artillery fire on the multiple targets to decrease total fire operation time. To design a program to describe a real firing situation, we consider many possible circumstances of changes such as commander's intention, firing constraints, target priority, and contingency plan to make a fire plan in an artillery unit. In order to work out the target sequencing problem, MIP is developed and the optimum solution is obtained by using ILOG OPL. If this analytical model is applied to a field artillery unit, it will improve the efficiency of the artillery fire force operations.

A Study on the Preplanned Target Allocation Problem for Minimizing Fire Time of Field Artillery (포병부대 계획표적 사격시간 단축을 위한 표적할당에 관한 연구)

  • Hwang, Won-Shik;Chun, Youn-Hwan;Phak, Hyon-Su;Youn, Sang-Heom
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2010
  • Fire sequencing problem is to find a sequence of firing on the targets. The latest, because the korea artillery force is inferior in number as compared with north korea force. It is an important question to give a fatal damage to the enemy force by using prompt and accurate fire in order to overcome the lack of artillery force. Minimizing the fire finishing time will secure the adapt ability in tactical operation. In this paper, we developed a mathematical model to do allocation the fire on the targets to decrease to total fire operation time. In order to work out the fire sequencing problem, MIP is developed and the optimum solution is obtained by using ILOG OPL. If this analytical model is applied to the field artillery unit, it will improve the artillery fire force enhancement.

The Development of an Automatic Shooting Range System Using CAN (CAN을 이용한 자동화 사격장 시스템 개발)

  • 허화라;최승욱;권구남
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.41-48
    • /
    • 2000
  • Recently, the requirement of automation in the every fields of the industrial places has been increased remarkably. The shooting range systems in the Past have been designed on the basis of static circumstance. However, Various transformation of the shooting circumstances is required, since the target for real shooting situation not static. In this study we have established for targets Per one shooting line to realize the dynamic shooting circumstance, distributed shooting order into sequence and random ones. and accommodated the shooting time variably. And, we have done an efficient communication possible, using CAN(Controller Area Network) applied to a lot of the car and the building automation. The CAN can support real-time control efficiently by connecting multiple ECU(Electric Control Unit), since it provide the high data transfer rate and the stability of communication.

  • PDF

Real-time Algorithms to Minimize the Threatening Probability in a Fire Scheduling Problem for Unplanned Artillery Attack Operation (비계획 사격상황에서 적 위협 최소화를 위한 실시간 사격순서 결정 연구)

  • Cha, Young-Ho;Bang, June-Young;Shim, Sangoh
    • Korean Management Science Review
    • /
    • v.34 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • We focus on the Real time Fire Scheduling Problem (RFSP), the problem of determining the sequence of targets to be fired at, for the objective of minimizing threatening probability to achieve tactical goals. In this paper, we assume that there are m available weapons to fire at n targets (> m) and the weapons are already allocated to targets. One weapon or multiple weapons can fire at one target and these fire operations should start simultaneously while the finish time of them may be different. We suggest mathematical modeling for RFSP and several heuristic algorithms. Computational experiments are performed on randomly generated test problems and results show that the suggested algorithms outperform the firing method which is generally adopted in the field artillery.

A Field Artillery Targeting Problem with Time Window by Genetic Algorithm (유전자 알고리즘을 이용한 시간제약 포병 표적처리문제)

  • Seo, Jae-Uk;Kim, Ki-Tae;Jeong, Geon-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.2
    • /
    • pp.11-24
    • /
    • 2010
  • Quick precision-strike capability of the artillery will be an important factor in modern and future war and it's represented by NCW and EBO. This study is based on artillery which has time limitation of firing, such as artillery which hides when not firing, and modeling various situations to decide firing order and who to shoot. The main purpose of this study is to suggest a mathematical programming model and a genetic algorithm which satisfies the limitation of firing time. The objective function is to minimize the total firing time to spend. The results of the suggested algorithm quickly gives a best solution for a large scale field artillery targeting problems.

Fire Sequencing Problem with Shared Targets (공유표적을 포함한 사격순서 결정에 관한 연구)

  • 김태헌;이영훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.3
    • /
    • pp.123-134
    • /
    • 2003
  • Fire Sequencing Problem (FSP) is to find a sequence of targets, where there exist a number of targets with different time units required to fire. Because of the weapon's specifications and the size of the targets, several weapons may fire on the same targets, and the time units required on firing for each weapon may be different from each other. The objective is to minimize the completion time of firing for given number of targets. Mathematical formulation is given, and the heuristic algorithm based on the paring of targets in advance is suggested. Performance of the heuristic is evaluated by comparison of heuristic appeared in the literature through the computational experiments.

Algorithms for Fire Sequencing Problem in Unplanned Artillery Attack Operation (포병부대 비계획 사격순서 결정 알고리즘)

  • Choi, Yong-Baek;Kim, Kyung-Sup
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.37-44
    • /
    • 2012
  • This paper focuses on scheduling problems arising in the military. In planned artillery attack operations, a large number of threatening enemy targets should be destroyed to minimize fatal loss to the friendly forces. We consider a situation in which the number of available weapons is smaller than the number of targets. Therefore it is required to develop a new sequencing algorithm for the unplanned artillery attack operation. The objective is to minimize the total loss to the friendly forces from the targets, which is expressed as a function of the fire power potential, after artillery attack operations are finished. We develop an algorithm considering the fire power potential and the time required to destroy the targets. The algorithms suggested in this paper can be used in real artillery attack operations if they are modified slightly to cope with the practical situations.

Heuristic for the Simultaneous Target Allocation and Fire Sequencing Problem (표적 할당과 사격 순서의 동시 결정 문제를 위한 발견적 기법)

  • Kim, Dong-Hyun;Lee, Young-Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.1
    • /
    • pp.47-65
    • /
    • 2010
  • In this study the artillery fire system is investigated in consideration of the characteristics of the troop and the target. Two kinds of decision are to be made on the target allocation with fire ammunition and the fire sequencing for the target with duties in charge. The objective is to minimize the completion time for all troops. Each target has the specified amount of load of fire, which can be accomplished by a single troop or the combination of the troops having different capabilities. Mathematical model is suggested, and the heuristic algorithm which yields a solution within a reasonable computation time is developed. The algorithm consists of iterative three steps : the initial solution generation, the division improvement, and the exchange improvement. The performance of the heuristic is evaluated through the computational experiment

A Branch-and-Bound Algorithm on the Fire Sequencing for Planned Artillery Operations (포병부대 사격순서결정을 위한 분지한계 알고리즘 연구)

  • Yoon, Sang-Hum;Hwang, Won-Shik;Juhn, Jae-Ho;Lee, Ik-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.154-161
    • /
    • 2010
  • This paper considers the simultaneously firing model for the artillery operations. The objective of this paper is to find the optimal fire sequence minimizing the final completion time of the firing missions of multiple artillery units for multiple targets. In the problem analysis, we derive several solution properties to reduce the solution space. Moreover, two lower bounds of objective are derived and tested along with the derived properties within a branch-and-bound scheme. Two efficient heuristic algorithms are also developed. The overall performances of the proposed branch-and-bound and heuristic algorithms are evaluated through various numerical experiments.