• Title/Summary/Keyword: 뼈대구조

Search Result 189, Processing Time 0.022 seconds

Advanced analysis and optimal design of steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu;Park, Moon Ho;Song, Jae Ho;Lim, Cheong Kweon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.661-672
    • /
    • 2003
  • The advanced analysis and optimal design of semi-rigid frame were presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. The member with the largest unit value evaluated using the LRFD interaction equation was replaced one by one with an adjacent larger member selected from the database. The objective function was assumed as the weight of steel frame, with the constraint functions accounting for load-carrying capacities, deflections. inter-story drifts, and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional LRFD method.

An Optimum Design of Steel Frames by Second Order Elastic Analysis (2차 탄성해석법에 의한 강뼈대 구조물의 최적설계)

  • Park, Moon-Ho;Jang, Chun-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2006
  • The main objective of this study is to develop an optimization algorithm of framed structures with rigid and various semi-rigid connections using the multilevel dynamic programming and the sequential unconstrained minimization techniques (SUMT). The second-order elastic analysis is performed for steel framed structures. The second order elastic analysis is developed based on nonlinear beam-column theory considering the bowing effect. The following semi-rigid connections are considered; double web angle, top-seat angle and top-seat angle with web angle. We considered the three connection models, such as modified exponential, polynomial and three parameter model. The total weight of the structural steel is used as the objective function in the optimization process. The dimensions of steel cross section are selected as the design variables. The design constraints consist of strength requirements for axial, shear and flexural resistance and serviceability requirements.

Optimal Design of Reinforced Concrete Frames using Sensitivity Analysis (설계민감도를 이용한 철근콘크리트 뼈대구조의 최적화)

  • Byun, Keun Joo;Choi, Hong Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • In the design of reinforced concrete framed structures, which consist of various design variables, the objective and the constraint functions are formulated in complicated forms. Usually iterative methods have been used to optimize the design variables. In this paper, multilevel formulation is adopted, and design variables are selected in reduced numbers at each level, to reduce the iterative cycle and to accelerate the convergence rate. At level 1, elastic analysis is performed to get the upper and lower bounds of the redistributed design moments due to inelastic behavior of the frame. Then the design moments are taken as design variables and optimized at level 2, and the sizing variables are optimized at level 3. The optimization of redistributed moments is performed using the design sensitivity obtained at the level 2, and force approximation technique is used to reflect the variation of design variables in the lower level to the upper level. The design variables are selected in reduced numbers at each level, and the optimization formulation is simplified effectively. A cost function is taken as the objective function, and the constraints of the stress of the structures are derived from BSI CP 110 following limit state theory. Numerical examples are included to prove the effectiveness of the developed algorithm.

  • PDF

Direct Solution of Structural Rigid Frames with Sidesway (절점이동(節點移動)이 있는 구조강절(構造剛節) 뼈대의 직접해법(直接解法))

  • Yang, Chang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.91-105
    • /
    • 1992
  • For the analysis of multistory frames with sidesway, no adequate procedures can be found in the classical methods of structural analysis. Even well-known procedures such as the slope-deflection method and the moment distribution method may not be effective tools since those methods require a multiple of computational labor and/or yield results of approximate values. In this study, a direct method is developed and proposed for the analysis of multistory frames with sidesway, which is due to the lateral loads, asymmetry of the structure itself, or asymmetry of vertical loadings. The proposed method is to obtain simple forms of equations derived by a mathematical formulation of the moment distribution procedure combined with successive correction concept. Numerical illustrations show that the results obtained by the proposed method agree well with those by rigorous ones. Undoubtedly, this newly developed method can be applied more easily for the analysis of structural frames without joint translation as well as continuous beams.

  • PDF

A Theoretical Investigation on Shakedown Analysis of Framed Structures (강뼈대 구조물의 소성안정 해석에 관한 이론적 연구)

  • Lee, Jong-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.71-77
    • /
    • 1988
  • For the collapse of structures due to the variable repeated load, two types of collapse mechanisms, i.e., incremental collapse and alternating plasticity, exist. Under the similar variable repeated loading conditions there exists shakedown state in the structures. In shakedown state, the number of plastic hinges are not increased and all further loading will be resulted in the elastic moment changes. Namely, under the shakedown state, structures do not collapse. In this investigation, shakedown analysis are performed by composing new computer programs. Basic theories employed to compose the programs are as follows. 1. Newton-Raphson methods are added to the existing matrix method for the plastic analysis. 2. An effort to construct the stiffness of axial and bending springs attached at both ends of the member has been made. By using the programs developed, it is possible to anticipate the collapse mechanisms (Incremental collapse, alternating plasticity). Lastly for the verification of performance of the program, demonstration examples have been solved and the results are compared with other sources.

  • PDF

A Study on the Risk Analysis of the RC Structure Subjected to Seismic Loading (철근콘크리트 구조물의 지진 위험성 분석에 관한 연구)

  • 이성로
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.183-192
    • /
    • 1994
  • Seismic safety of RC structure can be evaluated by numerical analysis considering randomness of earthquake motion and hysteretic behavior of reinforced concrete, which is more rational than determirustic analysis. In the safety assessment of aseismatic structures by the deterministic theory, it is not easy to consider th effects of random variables but the reliability theory and random vibration theory are useful to assess seismic safety with considering random effects. This study aims at the evaluation of sesmic damage and risk of the RC frame structure by stochastic response analysis of hysteretic system and then the calculation stages of the prob ability of failure are presented.

Multilevel Multiobjective Optimization for Structures (다단계 다목적함수 최적화를 이용한 구조물의 최적설계)

  • 한상훈;최홍식
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • Multi-level Multi-objective optimization(MLMO) for reinforced concrete framed structure is performed, and compared with the results of single-level single-objective optimization. MLMO method allows flexibility to meet the design needs such as deflection and cost of structures using weighting factors. Using Multi-level formulation, the numbers of constraints and variables are reduced at each levels, and the optimization formulation becomes simplified. The force approximation method is used to reflect the variation in design variables between the substructures, and thus coupling is maintained. And the linear approximated constraints and objective function are used to reduce the number of structural analysis in optimization process. It is shown that the developed algorithm with move limit can converge effectively to optimal solution.

  • PDF

Dynamic Analysis of Steel Jackets under Wave and Earthquake Loadings I : Linear and Non-linear F. E. Formulation (파랑 및 지진하중을 받는 스틸자켓의 동적해석 I : 선형 및 비선형 유한요소 정식화)

  • 김문영;백인열;고진석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.1-11
    • /
    • 2001
  • The purpose of this study is to develop the main program and pre/post processor for the geometric and plastic non-linear analysis of steel jacket structures subjected to wave and earthquake loadings. In this paper, steel jackets are modelled using geometric non-linear space frames and wave loadings re evaluated based on Morrison equation using the linear Airy theory and the fifth Stokes theory. Random wave is generated using JONSWAP spectrum. For earthquake analysis, dynamic analysis is performed using artificial earthquake time history. Also the plastic hinge method is presented for limit analysis of steel jacket. In the companion paper, the pre/post processor is developed and the numerical examples are presented for linear and non-linear dynamic analysis of steel jackets.

  • PDF

A Study on the Dynamic Post-Buckling Behavior of the Plane Frame Structures Subjected to Circulatory Forces (Circulatory Force를 받는 평면(平面)뼈대 구조물(構造物)의 동적(動的) 후좌굴(後座屈) 거동(擧動)에 관한 연구(硏究))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 1988
  • A geometrically nonlinear analysis procedure for plane frame structures in order to study the static and dynamic post-buckling behavior of these structures subjected to circulatory forces is presented. The elastic and geometric stiffness matrices, the mass matrix and load correction stiffness matrix are derived from the extended virtual work principle, where the tangent stiffness matrix becomes non-symmetric due to the effects of non-conservative circulatory forces. The dynamic analysis of plane frame structures subjected to circulatory forces in pre- and post-buckling ranges is carried out by integrating the equations of motion directly by the numerically stable Newmark method. Numerical results are presented in order to demonstrate the vality and accuracy of the proposed procedure.

  • PDF

연결통로 구조물의 안전성 평가 사례 연구

  • 채원규;은충기;김광일;손영현;홍성욱
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.46-52
    • /
    • 2001
  • 본 연구에서는 롤러로 지지된 슬래브 구조물인 연결통로 구조물에 대한 구조해석을 수행하여, 고정하중(사하중)과 활하중 작용시 대상구조물에 발생되는 최대 변위 및 최대 단면력을 해석하였으며, 극한강도설계법에 의하여 극한강도 및 설계강도를 비교·검토함으로써 대상 연결통로 구조물의 안전성을 평가하였다. 구조해석시 대상구조물을 3차원 뼈대 요소 및 shell 요소로 형상화하여 모델링하였으며, 현재 가장 널리 사용되고 있는 범용 구조해석 프로그램인 SAP 2000 Nonlinear에 의해 구조해석을 수행하였다.(중략)

  • PDF