• Title/Summary/Keyword: 빔 배열

Search Result 501, Processing Time 0.025 seconds

Technology Trends in Communication Payload for the Broadband LEO Satellite Constellation (저궤도 군집 통신위성 탑재체 기술 동향)

  • Uhm, M.S.;Chang, D.P.;Lee, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.3
    • /
    • pp.41-51
    • /
    • 2022
  • This article presents an overview of the key technologies in the communications payload of broadband LEO satellite communications systems. In recent years, new developments have been realized for LEO satellite communications. SpaceX's Starlink, a technology leader in this field, offers premium services with satellites carrying in-house developed communications payloads. OneWeb, Amazon, Telesat, and Boeing are also developing LEO satellite communications payloads. The communications payload consists of user link antennas, inter-satellite link communications equipment, feeder link antennas, and a digital processor. Highly sophisticated technologies of compact active phased array antennas for generating multiple hopping beams and light laser communication equipment for ultra-high-speed inter-satellite communication will be applied to next- generation payloads.

Image enhancement in ultrasound passive cavitation imaging using centroid and flatness of received channel data (수신 채널 신호의 무게중심과 평탄도를 이용한 초음파 수동 공동 영상의 화질 개선)

  • Jeong, Mok Kun;Kwon, Sung Jae;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.450-458
    • /
    • 2019
  • Passive cavitation imaging method is used to observe the ultrasonic waves generated when a group of bubbles collapses. A problem with passive cavitation imaging is a low resolution and large side lobe levels. Since ultrasound signals generated by passive cavitation take the form of a pulse, the amplitude distribution of signals received across the receive channels varies depending on the direction of incidence. Both the centroid and flatness were calculated to determine weights at imaging points in order to discriminate between the main and side lobe signals from the signal amplitude distribution of the received channel data and to reduce the side lobe levels. The centroid quantifies how the channel data are distributed across the receive channel, and the flatness measures the variance of the channel data. We applied the centroid weight and the flatness to the passive cavitation image constructed using the delay-and-sum focusing and minimum variance beamforming methods to improve the image quality. Using computer simulation and experiment, we show that the application of weighting in delay-and-sum and minimum variance beamforming reduces side lobe levels.

Design of V-Band Waveguide Slot Sub-Array Antenna for Wireless Communication Back-haul (무선통신 백-홀용 V-밴드 도파관 슬롯 서브-배열 안테나의 설계)

  • Noh, Kwang-Hyun;Kang, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.334-341
    • /
    • 2016
  • In this paper, the study of a waveguide aperture-coupled feed-structured antenna has been conducted for the purpose of applying it to a wireless back-haul system sufficient for high-capacity gigabits-per-second data rates. For this study, a $32{\times}32$ waveguide slot sub-array antenna with a corporate-feed structure was designed and produced. Also, this antenna is used at 57 GHz to 66 GHz in the V-band. The construction of the antenna is a laminated form with radiating parts (outer groove and slot, cavity), a coupled aperture, and feeds in each. The antenna was designed with HFSS, which is based on 3D-FEM, produced with aluminum processed by a precision-controlled milling machine, and assembled after a silver-plating process. The measurement result from analysis of the characteristics of the antenna shows that return loss is less than -12 dB, VSWR < 2.0, and a wide bandwidth ranges up to 16%. An overall first side lobe level is less than -12.3 dB, and a 3 dB beam width is narrow at about $1.85^{\circ}$. Also, antenna gain is 38.5 dBi, offering high efficiency exceeding 90%.

The Influence of Volume Effect in 2D-array Ion Chamber on the Measurement of IMRT Dose Distribution (2차원 배열형 이온함의 부피효과가 세기조절방사선치료의 선량분포 측정에 미치는 영향)

  • Kim, Sung Joon;Lee, Seoung Jun;Park, In Kyu;Lee, Jeong Eun;Park, Shin Hyung;Seol, Ki Ho;Kim, Jae Chul
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • We evaluated the influence of volume effect on the measurement of IMRT dose distribution by comparing a 2D-array ion chamber and other dosimeters. Matrix phantom which is a 2D-array ion chamber having volume effect was compared with beam image system and film for the measurement of dose distribution. Five intensity-modulated radiation therapy plans were created using five fields in thevirtual phantom. The measured dose distribution was compared with the calculated one by radiation treatment planning system and analysis program. We evaluated the conformity of dose distribution by calculating correlation coefficients and gamma values. The highest error rate of 1.3% was associated with matrix phantom in which volume effect in small field sizes was substantial.

Design of 5.8 GHz Patch Array Antenna for FTMS Roadside Equipment (FTMS 기지국용 5.8 GHz 대역 배열 패치 안테나 설계)

  • Kwon, Han-Joon;Lee, Jae-Jun;Lee, Seung-Hwan;Kim, Yong-Deak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.61-70
    • /
    • 2008
  • This paper designed the antenna for collecting and servicing the traffic information that apply to freeway Traffic Management System, as using DSRC (Dedicated Short Range Communication). Active DSRC is the technology that is using 5.8GHz Radio Frequency to a mean Sequency and there are a lot of the case occurring a physical electric wave shadowing because of the traveling straight of a electric wave. In such inferior communication environment, it constructed the stabilized communication link that can do collecting and servicing the correct traffic information and designed the beam pattern considering the establishment position of the antenna that can apply to various road environments and a communication area. By considering the communication link environment, this paper designed and manufacture the mean frequency of 5.8GHz, the input loss of -17dB in 75MHz bandwidth, the Axial ratio of 1.5:1, and $2{\times}4$ array microstrip antenna which beam pattern have the characteristic of $55^{\circ}$ horizontal half power beam width and $26^{\circ}$elevation half power beam width and the minimum establishment height of the antenna was designed as 14m for avoiding electric wave shadowing on a physical condition between vehicles

  • PDF

Design of a Multimode Piezoelectric Spherical Vector Sensor for a Cardioid Beam Pattern (심장형 빔 패턴을 위한 다중모드 압전 구형 벡터센서 설계)

  • Lim, Youngsub;Lee, Jaeyoung;Joh, Cheeyoung;Seo, Heeseon;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.32-42
    • /
    • 2013
  • Typical underwater piezoelectric spherical sensors are omni-directional, thus can measure the scalar quantity sound-pressure-magnitude only with the limitation not being able to measure the direction of the incoming wave. This paper proposes a method to simultaneously measure both the magnitude and direction of the sound wave with the spherical sensor. The method divides the piezoceramic sphere of the sensor into eight elements, and distinguishes the magnitude and direction of the sound pressure by combining the output voltage of the elements in a particular manner. Further, through the analysis of the sensitivity variation in relation to the structural parameters like radius and thickness of the piezoceramic sphere, we have suggested the way to improve the sensitivity of the vector sensor.

System Performance Analysis for Multi-Band SweepSAR Operating Mode (다중대역 SweepSAR 운용 모드의 시스템 성능 분석)

  • Yoon, Seong-Sik;Lee, Jae-Wook;Lee, Taek-kyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Kang, Eun-Su;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.186-194
    • /
    • 2017
  • In this paper, we analyze the main performance of satellite's Synthetic Aperture Radar system for high resolution and wide swath. We have used the radiation pattern of reflector antenna with array feed and comparison between the conventional ScanSAR mode and SweepSAR mode has been carried out. The SweepSAR mode is a high-resolution wide-swath mode that transmits beams over a wide range and receives echo signals through sequential beamforming based on SCORE(SCan On REceive). In this paper, we analyzed the operating principle and characteristics of satellite's SweepSAR mode and simulate system performances. In addition, in order to increase the utilization of image, performances analysis for multiple frequency bands(C-band, X-band) has been considered.

A Study on Design of the Electrical Down Tilting Antenna with Shaped Beam Pattern (성형 빔 패턴을 갖는 전기적인 다운 틸팅 안테나의 설계에 관한 연구)

  • Lee Chang Eun;Hur Jung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.111-118
    • /
    • 2005
  • The shape of vertical pattern of base station antenna affects greatly quality of the communication of not only a service zone but also adjacent cells and then it is an important point to be considered in designing cell coverage. Currently type of vertical patterns to be applied to base station antenna are divided into five classes. In designing antenna, these five classes are applied solely or compositely according to the environment to be used antenna. In this paper, the dual polarized antenna for base station that is with a continuous electrical down tilting and with a shaped beam pattern, that an upper side lobe is suppressed and a lower null is filled, is designed and fabricated for synthesizing of the shape beant the pattern synthesis methods proposed by R. S. Elliott is used sequentially and for the electrical don tilting, the phased array theory is applied. Measured results show the down tilting range from 0° to 14°, the gain of Min. 13.3dBi and the upper side lobe of Max. -23dB. And we verified that upper side lobe is not to vary greatly and null filling performance is favorable overall.

Design of SONAR Array for Detection of Bottoming Cylindrical Objects (착저 원통형 물체 탐지를 위한 소나 어레이 설계)

  • Kim, Sunho;Jung, Jangwon;On, Baeksan;Im, Sungbin;Seo, Iksoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.15-21
    • /
    • 2017
  • In the active SONAR system, various studies have been carried out to enhance the resolution of a received signal. In order to obtain higher resolution for detecting a bottoming cylindrical object, the design of a planar array for SONAR is investigated in this paper. It is necessary to employ planar structures for SONAR array to obtain narrower beam pattern which gives high resolution. In this study, the transmit frequency of each acoustic transducer, which consists of an array is 13 kHz. For efficient detection of a target of an asymmetric size, the concept of areal angle is applied, which considers resolution according to both azimuth and elevation angles in array design. In the design, the areal angle is first investigated to satisfy the resolution requirements, and then based on the value of areal angles, the azimuth angle and the elevation angle are calculated respectively to design an array.

Development of Photoacoustic System for Breast Cancer Detection (유방암 진단용 광음향 영상 시스템 개발)

  • Lee, Soonhyouk;Ji, Yun-Seo;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.183-190
    • /
    • 2013
  • Recently, the photoacoustic imaging system has been widely and intensively developed, and has been shown the possibility of diagnosis for early stage cancer. In this study, we developed a photoacoustic tomography imaging system with a commercial ultra sound device and a linear array probe. A tube phantom and a chicken breast phantom was made for the possibility of a system as a breast cancer detection. A moving average filter and a band pass filter with 3~6 MHz bandwidth were developed for background noise elimination before delay-and-sum beamforming algorithm was used for image reconstruction. As a result, we showed that some signal processing procedure before beamforming was effective for the photoacoustic image reconstruction.