• 제목/요약/키워드: 빈발 아이템셋

검색결과 5건 처리시간 0.019초

트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석 (Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints)

  • 윤은일;편광범
    • 인터넷정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-74
    • /
    • 2015
  • 최근, 아이템들의 가치를 고려한 빈발 아이템셋 마이닝 방법은 데이터 마이닝 분야에서 가장 중요한 이슈 중 하나로 활발히 연구되어왔다. 아이템들의 가치를 고려한 마이닝 기법들은 적용 방법에 따라 크게 가중화 빈발 아이템셋 마이닝, 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝, 유틸리티 아이템셋 마이닝으로 구분된다. 본 논문에서는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝들에 대해 실증적인 분석을 수행한다. 일반적으로 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법들은 데이터베이스 내 아이템들의 가치를 고려함으로써 트랜잭션 가중치를 계산한다. 또한, 그 기법들은 계산된 각 트랜잭션의 가중치를 바탕으로 가중화 빈발 아이템셋들을 마이닝 한다. 트랜잭션 가중치는 트랜잭션 내에 높은 가치의 아이템이 많이 포함 될수록 높은 값으로 나타나기 때문에 우리는 각 트랜잭션의 가중치의 분석을 통해 그 가치를 파악할 수 있다. 우리는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법 중에서 가장 유명한 알고리즘인 WIS와 WIT-FWIs, IT-FWIs-MODIFY, WIT-FWIs-DIFF의 장 단점을 분석하고 각각의 성능을 비교한다. WIS는 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝의 개념과 그 기법이 처음 제안된 알고리즘이며, 전통적인 빈발 아이템셋 마이닝 기법인 Apriori를 기반으로 하고 있다. 또 다른 트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 방법인 WIT-FWIs와 WIT-FWIs-MODIFY, WIT-FWIs-DIFF는 가중화된 빈발 아이템셋 마이닝을 더 효율적으로 수행하기 위해 격자구조(Lattice) 형태의 특별한 저장구조인 WIT-tree를 이용한다. WIT-tree의 각 노드에는 아이템셋 정보와 아이템셋이 포함된 트랜잭션의 ID들이 저장되며, 이 구조를 사용함으로써 아이템셋 마이닝 과정에서 발생되는 다수의 데이터베이스 스캔 과정이 감소된다. 특히, 전통적인 알고리즘들이 수많은 데이터베이스 스캔을 수행하는 반면에, 이 알고리즘들은 WIT-tree를 이용해 데이터베이스를 오직 한번만 읽음으로써 마이닝과정에서 발생 가능한 오버헤드 문제를 해결한다. 또한, 공통적으로 길이 N의 두 아이템셋을 이용해 길이 N+1의 새로운 아이템셋을 생성한다. 먼저, WIT-FWIs는 각 아이템셋이 동시에 발생되는 트랜잭션들의 정보를 활용하는 것이 특징이다. WIT-FWIs-MODIFY는 조합되는 아이템셋의 정보를 이용해 빈도수 계산에 필요한 연산을 줄인 알고리즘이다. WIT-FWIs-DIFF는 두 아이템셋 중 하나만 발생한 트랜잭션의 정보를 이용한다. 우리는 다양한 실험환경에서 각 알고리즘의 성능을 비교분석하기 위해 각 트랜잭션의 형태가 유사한 dense 데이터와 각 트랜잭션의 구성이 서로 다른 sparse 데이터를 이용해 마이닝 시간과 최대 메모리 사용량을 평가한다. 또한, 각 알고리즘의 안정성을 평가하기 위한 확장성 테스트를 수행한다. 결과적으로, dense 데이터에서는 WIT-FWIs와 WIT-FWIs-MODIFY가 다른 알고리즘들보다 좋은 성능을 보이고 sparse 데이터에서는 WIT-FWI-DIFF가 가장 좋은 효율성을 갖는다. WIS는 더 많은 연산을 수행하는 알고리즘을 기반으로 했기 때문에 평균적으로 가장 낮은 성능을 보인다.

시간 단위 그룹핑을 이용한 빈발 아이템셋 마이닝 (Mining Frequent Itemsets using Time Unit Grouping)

  • 황정희
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.647-653
    • /
    • 2022
  • 데이터 마이닝은 데이터를 탐색하고 분석하여 데이터 사이의 관계나 패턴 등의 지식을 탐사하는 기법이다. 실세계에서 발생하는 데이터는 시간 속성을 포함한다. 시간 속성을 포함하는 데이터에서 유용한 지식을 찾아내기 위한 시간 데이터마이닝 연구는 미래를 예측할 수 있는 예측 판단에 효율적으로 활용될 수 있다. 본 논문은 데이터베이스를 일정한 시간 간격 단위로 구분하고, 시간 단위에서 빈발한 패턴 아이템셋을 발견하기 위한 시간 단위 그룹핑을 이용하는 알고리즘을 제안한다. 제안하는 알고리즘은 시간 단위에 포함된 트랜잭션과 아이템 정보를 매트릭스로 구성하고, 그룹핑을 통한 시간 단위에서의 빈발한 아이템셋을 발견한다. 성능평가의 실험 결과에서 수행시간은 기존의 알고리즘보다 1.2배 소요되지만, 2배 이상의 빈발 아이템셋이 탐사되었다.

빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝 (Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform)

  • 뉘엔양쯔엉;뉘엔반퀴엣;뉘엔신응억;김경백
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1593-1601
    • /
    • 2017
  • 빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가 소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는 동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록 하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡기반의 빅데이터 플랫폼에서 SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.

RFM기반 FP-tree 마이닝을 이용한 개인화 추천시스템 (Personalized Recommendation System using FP-tree Mining based on RFM)

  • 조영성;류근호
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.197-206
    • /
    • 2012
  • 기존의 연관규칙을 이용한 추천시스템은 매번 계속적으로 대량의 데이터를 스캔해야 하므로 속도가 느릴 뿐 아니라 확장성 문제와 정확도 문제가 있다. 본 논문에서는 사용자의 평가 자료에 의존하지 않고 묵시적인(Implicit)방법을 이용하여 RFM(Recency, Frequency, Monetary)기반 FP-tree 마이닝을 이용한 개인화 추천시스템을 제안한다. 구매 가능성이 높은 아이템을 찾기 위해서 고객정보와 구매이력정보를 기반으로 고객과 아이템의 속성 반영이 가능한 RFM기법과 FP-tree 마이닝을 이용한다. 제안 방법으로 RFM기반의 FP-tree 마이닝을 이용하여 후보집합의 발생없이 빈발항목을 구성하고 연관규칙을 생성한다. 생성된 연관규칙의 지지도, 신뢰도, 향상도를 사용하여 추천 효율성이 높은 아이템 추천이 가능하다. 성능평가를 위해 현업에서 사용하는 인터넷 화장품 아이템 쇼핑몰의 데이터를 기반으로 데이터 셋을 구성하여 기존의 시스템과 비교 실험을 통해 성능을 평가하여 효용성과 타당성을 입증하였다.

자유트리 기반의 그래프마이닝 기법 분석 (Analysis of Graph Mining based on Free-Tree)

  • 노영상;윤은일;류근호;김명준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.275-278
    • /
    • 2008
  • 데이터마이닝은 현재 매우 각광 받고 있는 분야다. 연관규칙탐사는 트랜잭션 데이터베이스에서 일정빈도 이상의 패턴을 찾아내는 작업을 말한다. 그중 빈발서브그래프패턴 마이닝은 최근 관심이 늘어나고 있으며, 그 활용도 또한 매우 높다. 그래프마이닝은 아이템셋마이닝보다 훨씬 더 많은 계산을 필요로 한다. 중복을 최소화 하는 방법이 필요하며, 그중 가장 좋은 성능을 보이는 GASTON 알고리즘을 분석한다.