The Journal of the Korea institute of electronic communication sciences
/
v.9
no.10
/
pp.1079-1085
/
2014
The analysis of the variable continuous big data stram should reach the destination context awareness. This study presented a novel way of context inference of the variable data stream from sensor motes. For assessment of the sensor data, we calculated the difference of each measured value at the time window and determined the belief value of each focal element. It was beneficial that calculate and assessment of factor of situation for context inference with the Dempster-Shfer evidence theory.
A service size of the IoT environment is determined by the number of sensors. The number of sensors increase means increases the amount of data generated by the IoT environment. There are studies to reliably operate a network for research and operational dynamic buffer for data when network congestion control congestion in the network environment. There are also studies of the stream data that has been processed in the connectionless network environment. In this study, we propose a sensor gateway for processing big data of the IoT environment. For this, review the RESTful for designing a sensor middleware, and apply the double-buffer algorithm to process the stream data efficiently. Finally, it generates a big data traffic using the MJpeg stream that is based on the HTTP protocol over TCP to evaluate the proposed system, with open source media player VLC using the image received and compare the throughput performance.
Yun, Chang Ho;Park, Jong Won;Jung, Hae Sun;Lee, Yong Woo
Journal of Internet Computing and Services
/
v.18
no.3
/
pp.1-9
/
2017
Smart Cities intelligently manage numerous infrastructures, including Smart-City IoT devices, and provide a variety of smart-city applications to citizen. In order to provide various information needed for smart-city applications, Smart Cities require a function to intelligently process large-scale streamed big data that are constantly generated from a large number of IoT devices. To provide smart services in Smart-City, the Smart-City Consortium uses stream reasoning. Our stream reasoning requires real-time processing of big data. However, there are limitations associated with real-time processing of large-scale streamed big data in Smart Cities. In this paper, we introduce one of our researches on cloud computing based real-time distributed-parallel-processing to be used in stream-reasoning of IoT big data in Smart Cities. The Smart-City Consortium introduced its previously developed smart-city middleware. In the research for this paper, we made cloud computing based real-time distributed-parallel-processing available in the cloud computing platform of the smart-city middleware developed in the previous research, so that we can perform real-time distributed-parallel-processing with them. This paper introduces a real-time distributed-parallel-processing method and system for stream reasoning with IoT big data transmitted from various sensors of Smart Cities and evaluate the performance of real-time distributed-parallel-processing of the system where the method is implemented.
스마트폰, 센서, 소셜미디어, 웹 서비스 등으로부터 발생되는 데이터의 폭증으로 인하여 빅데이터의 분석 및 활용에 대한 요구가 커져가고 있다. 특히 스마트 기기의 발달과 사용자 이용 패턴의 변화로 인하여 스트림 데이터는 끊임없이 발생되고 있지만, 기존의 하둡을 이용한 분석 시스템은 응답시간이 지연되어 빠르게 결과를 조회할 수 없는 단점으로 인하여 데이터를 실시간으로 분석하여 바로 활용할 수 있는 시스템에 대한 요구가 점점 더 증가하면서 람다 아키텍쳐가 등장하였다. 람다 아키텍쳐는 데이터 처리 과정을 배치 레이어와 스피트 레이어로 나누고, 스피드 레이어에서는 배치 결과가 나오기 전까지 스트림으로 유입되는 데이터를 실시간으로 분석하여 가장 최근의 데이터를 빠르게 조회 할 수 있도록 결과를 제공한다. 본 논문에서는 람다 아키텍쳐를 활용하여 연속적으로 유입되는 대용량의 스트림 데이터를 효과적으로 처리하여 실시간 분석과 동시에 배치 분석을 제공하는 데이터 처리 시스템을 설계하고 구현한다.
현재 다양한 센서 기기에서 쏟아지는 대용량의 정형/비정형의 스트림 데이터의 경우 기존의 단일 스트리밍 처리 시스템 만으로 처리하기에는 한계가 있다. 클러스터의 디스크가 아닌 메모리들을 사용하여 대용량 데이터 처리를 할 수 있는 Spark 는 분산 처리 임에도 불구하고 강력한 데이터 일관성과 실시간성을 확보할 수 있는 플랫폼이다. 본 연구에서는 대용량 스트림 데이터 분석 시 발생하는 메모리 공간 부족과 실시간 병렬 처리 문제를 해결하고자, 클러스터의 메모리를 이용하여 대용량 데이터의 분산 처리와 스트림 실시간 처리를 동시에 할 수 있도록 구성하였다. 실험을 통하여, 기존 배치 처리 방식과 제안 시스템의 성능 차이를 확인 할 수 있었다.
Many studies have been carried out for the development of big data utilization and analysis technology recently. There is a tendency that government agencies and companies to introduce a Hadoop of a processing platform for analyzing big data is increasing gradually. Increased interest with respect to the processing and analysis of these big data collection technology of data has become a major issue in parallel to it. However, study of the collection technology as compared to the study of data analysis techniques, it is insignificant situation. Therefore, in this paper, to build on the Hadoop cluster is a big data analysis platform, through the Apache sqoop, stylized from relational databases, to collect the data. In addition, to provide a sensor through the Apache flume, a system to collect on the basis of the data file of the Web application, the non-structured data such as log files to stream. The collection of data through these convergence would be able to utilize as a basic material of big data analysis.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.8
/
pp.535-544
/
2018
As the spread of mobile devices equipped with various sensors and high-quality wireless network communications functionsexpands, the amount of spatio-temporal data generated from mobile devices in various service fields is rapidly increasing. In conventional research into processing a large amount of real-time spatio-temporal streams, it is very difficult to apply a Hadoop-based spatial big data system, designed to be a batch processing platform, to a real-time service for spatio-temporal data streams. This paper extends the MapReduce online framework to support real-time query processing for continuous-input, spatio-temporal data streams, and proposes a load management method to distribute overloads for efficient query processing. The proposed scheme shows a dynamic load balancing method for the nodes based on the inflow rate and the load factor of the input data based on the space partition. Experiments show that it is possible to support efficient query processing by distributing the spatial data stream in the corresponding area to the shared resources when load management in a specific area is required.
Park, Jong-Won;Sim, Ye-Chan;Jung, Hae-Sun;Lee, Yong-Woo
Journal of Internet Computing and Services
/
v.19
no.4
/
pp.1-6
/
2018
In smart cities, data from various kinds of sensors are collected and processed to provide smart services to the citizens. Noise information services with noise maps using the collected sensor data from various kinds of ubiquitous sensor networks is one of them. This paper presents a research result which generates three dimensional (3D) noise maps in real-time for smart cities. To make a noise map, we have to converge many informal data which include big image data of geographical Information and massive sensor data. Making such a 3D noise map in real-time requires the processing of the stream data from the ubiquitous sensor networks in real-time and the convergence operation in real-time. They are very challenging works. We developed our own methodology for real-time distributed and parallel processing for it and present it in this paper. Further, we developed our own real-time 3D noise map generation system, with the methodology. The system uses open source softwares for it. Here in this paper, we do introduce one of our systems which uses Apache Storm. We did performance evaluation using the developed system. Cloud computing was used for the performance evaluation experiments. It was confirmed that our system was working properly with good performance and the system can produce the 3D noise maps in real-time. The performance evaluation results are given in this paper, as well.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.5
/
pp.1117-1132
/
2019
Recently, IT technology such as internet, mobile, and IOT has rapidly developed, making it easy to collect data necessary for business, and the collected data is analyzed as a new method of big data analysis and used appropriately for business. In this way, data collection and analysis becomes easy. In such data, personal information including an identifier such as a sensor id, a device number, IP address, or the like may be collected. However, if systematic management is not accompanied by collecting and disposing of large-scale data, violation of relevant laws such as "Personal Data Protection Act". Furthermore, data quality problems can also occur and make incorrect decisions. In this paper, we propose a new data governance maturity model(DGMM) that can identify the personal data contained in the data collected by companies, use it appropriately for the business, protect it, and secure quality. And we also propose a over all implementation process for DG Program.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.