Journal of Information Technology Applications and Management
/
v.20
no.4
/
pp.1-18
/
2013
Big data has become a worldwide topic. Despite this, big data accurately understand and acquire the business to take advantage of companies that were only very few. The purpose of this study is to investigate the factors that effect Korean firm's adopting big data system. Empirical test was conducted to verify hypotheses using extended technology acceptance model and we analyzed factors which affect the behavioral intention of big data System. Based upon previous researches, we have selected organization innovation, organization slank, organization information system infra maturity, perceived benefits of big data system, perceived usefulness, perceived ease of use, behavioral intention as variables and proposed a research model based on survey questionnaires. From those, we drew that perceived usefulness and perceived ease of use influenced the behavioral intention. The results of this study will increase the users' awareness on big data system and contribute to develop a way to enable the introduction of new technologies.
The world's best level of ICT(Information, Communication and Technology) infrastructure has experienced the world's worst level of ICT accident in Korea. The number of major accidents of privacy invasion has been three times larger than the total number of Internet user of Korea. The cause of the severe accident was due to big data environment. As a result, big data environment has become an important policy agenda. This paper has conducted analyzing the accident case of data spill to study policy issues for ICT security from a social science perspective focusing on risk. The results from case analysis are as follows. First, ICT risk can be categorized 'severe, strong, intensive and individual'from the level of both probability and impact. Second, strategy of risk management can be designated 'avoid, transfer, mitigate, accept' by understanding their own culture type of relative group such as 'hierarchy, egalitarianism, fatalism and individualism'. Third, personal data has contained characteristics of big data such like 'volume, velocity, variety' for each risk situation. Therefore, government needs to establish a standing organization responsible for ICT risk policy and management in a new big data era. And the policy for ICT risk management needs to balance in considering 'technology, norms, laws, and market'in big data era.
근래 지구온난화에 따른 자연재해의 증가와 장기 코로나19의 전염으로 사회적 비대면 필요성이 증대되면서 온라인을 통한 건강관리 및 의료 진단·처방 등 디지털 헬스케어의 필요성이 증대되고 있다. 디지털 헬스케어로 기존 병원 진료의 온라인 원격 진료/처방이 지속 증가하고 있을 뿐만 아니라 관련 빅데이터를 모아 개인 건강과 질병 상태 정보를 취합하여 건강 관리 및 치료를 하는 디지털 치료제 개발이 급속 진행되고 있으며 관련 벤처 창업도 활발히 진행되고 있다. 이러한 디지털 헬스케어, 디지털 치료제 산업의 활성화는 각 개인의 신체 상태를 상시 측정하고 이 정보를 관련 시스템과 연동 할 수 있는 웨어러블 디바이스, 특히 스마트워치의 보급 증대에 힘입은 바가 크다. 본 연구에서는 스마트워치의 기술혁신이 디지털 헬스케어의 수용성에 어떻게 영향을 미치는지 확장된 통합기술수용모델을 적용하여 분석하고, 혁신 사례로 스마트워치를 활용한 디지털 수면 치료제 벤처 개발 현황을 제시하였다. 본 연구를 통해 확인한 결과는 다음과 같다. 첫째 디지털 헬스케어 스마트워치의 개인혁신성, 효용가치, 사용편의 등 ICT 변인들에 대한 기술발전의 매개 영향은 유의한 것으로 나타났다. 둘째 ICT 변인들과 기술발전 매개변수는 디지털 헬스케에 스마트워치 수용의도에 대부분 정(+)의 영향을 미치는 것으로 확인되었다. 단 기술발전은 개인혁신성에는 크게 매개하지 않는 것으로 나타났다. 이러한 혁신기술의 디지털 헬스케어 스마트워치 수용의도 영향 평가 결과는 스마트워치 각종 서비스 상품기획과 마케팅에 유효하게 참조 할 수 있을 것으로 보이며 추후 세분화 연구를 통하여 더욱 소비자 특화된 제품과 서비스를 창출하는데 기여 할 수 있을 것으로 사료 된다.
Kim, Yeongdae;Kim, Ji-Young;Jeong, Wonkyung;Shin, Yongtae
KIPS Transactions on Computer and Communication Systems
/
v.10
no.12
/
pp.329-342
/
2021
The pharmaceutical industry is experiencing a productivity crisis with a low probability of success despite a long period of time and enormous cost. As a strategy to solve the productivity crisis, the use cases of Artificial Intelligence(AI) and Bigdata are increasing worldwide and tangible results are coming out. However, domestic pharmaceutical companies are taking a wait-and-see attitude to adopt AI platform for drug research. This study proposed a research model that combines the Value-based Adoption Model and the Innovation Resistance Model to empirically study the effect of value perception and resistance factors on adopting AI Platform. As a result of empirical verification, usefulness, knowledge richness, complexity, and algorithmic opacity were found to have a significant effect on perceived values. And, usefulness, knowledge richness, algorithmic opacity, trialability, technology support infrastructure were found to have a significant effect on the innovation resistance.
Platform finance is emerging as an alternative finance for SMEs by suggesting a new funding source based on a new technology named FinTech. The essence of this business is the adapting ICT challenges to the financial industry that can adequately reflect risk assessment using Big Data and effectively meet individual risk-return preference. Thus, this is evolving as an alternative to existing finance in the form of P2P loans for Micro Enterprises and supply-chain finance for SMEs that need more working capital. Platform finance in Korea, however, is still at an infant stage and requires policy support. This can be summarized as follows: "Participation of institutional investors and the public sector," meaning that public investors provide seed money for the private investors to crowd in for platform finance. "Negative system in financial regulations," with current regulations to be deferred for new projects, such as Sandbox in the UK. In addition, "Environment for generous use of data," allowing discretionary data sharing for new products," and "Spreading alternative investments," fostering platform finance products as alternative investments in the low interest-rate era.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.622-625
/
2014
As Big data began to produce a variety of values, a database that allows for huge amount of data with varieties became to be needed. Therefore, for the purpose of overcoming the limitations of the complexity and capacity of the existing RDBMS, NoSQL databases were introduced. Among the different types of NoSQL databases, MongoDB is most commonly used and is offered as open sources. The B-Tree index, used in MongoDB, experiences a significant decrease in performance as the amount of data increases. The fractal tree index enables to enhance the performance of B-Tree substantially by improving B-Tree's insertion algorithm. In this paper, the performances of MongoDB when using B-Tree Index and when using Fractal Tree Index are compared.
This study is to reveal the acceptance factors of the Market Sentiment Index (MSI) created by reflecting the investor sentiment extracted by processing unstructured big data. The research model was established by exploring exogenous variables based on the rational behavior theory and applying the Technology Acceptance Model (TAM). The acceptance of MSI provided to investors in the stock market was found to be influenced by the exogenous variables presented in this study. The results of causal analysis are as follows. First, self-efficacy, investment opportunities, Innovativeness, and perceived cost significantly affect perceived ease of use. Second, Diversity of services and perceived benefits have a statistically significant impact on perceived usefulness. Third, Perceived ease of use and perceived usefulness have a statistically significant effect on attitude to use. Fourth, Attitude to use statistically significantly influences the intention to use, and the investment opportunities as an independent variable affects the intention to use. Fifth, the intention to use statistically significantly affects the final dependent variable, the intention to use continuously. The mediating effect between the independent and dependent variables of the research model is as follows. First, The indirect effect on the causal route from diversity of services to continuous use intention was 0.1491, which was statistically significant at the significance level of 1%. Second, The indirect effect on the causal route from perceived benefit to continuous use intention was 0.1281, which was statistically significant at the significance level of 1%. The results of the multi-group analysis are as follows. First, for groups with and without stock investment experience, multi-group analysis was not possible because the measurement uniformity between the two groups was not secured. Second, the analysis result of the difference in the effect of independent variables of male and female groups on the intention to use continuously, where measurement uniformity was secured between the two groups, In the causal route from usage attitude to usage intention, women are higher than men. And in the causal route from use intention to continuous use intention, males were very high and showed statistically significant difference at significance level 5%.
Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.
최근 모바일 스마트 기가 및 서비스의 새로운 패러다임 진화에 따른 초연결(Hyper connection) 사회로의 진입과 빅데이터 출현으로 인해, 모바일 트래픽은 해마다 2배씩 증가하여 10년 뒤 1,000배 이상 증가할 것으로 예상하고 있으며, 이처럼 급격히 증가하는 모바일 트래픽 증가로 인해 모바일 망 사업자의 부담이 가중되고 있다. 추가 주파수 확보가 제한된 기존의 4G 이동통신으로는 이러한 모바일 트래픽 폭증에 따른 1,000배 용량 증대를 수용할 수 없고, 따라서 광대역폭 확보가 가능한 밀리미터파 기반의 5세대 이동통신 기술 개발이 전 세계적으로 시작되고 있다. 본고에서는 비/저활용 되어 왔던 밀리미터파를 개척하여 5세대 이동통신 기술로 활용하는 기술 개발 동향을 살펴본다. 특히, 한국전자통신연구원에서 진행하고 있는 '중추 네트워크 원전기술 개발 과제' 내용을 중점적으로 소개하고자 한다.
As the acceptance of statistical analysis has been increased because of Big Data, the needs for an advanced second generation of statistical analysis method like Structural Equation Model are also increasing. This study suggests how R-Program, as open software, can be utilized when Partial Least Square Model, one of the SEMs, is applied to statistical analysis. R is a free software as a part of GNU projects as well as a powerful and useful tool for statistical analysis including Big Data. The study utilized R and SmartPLS, a representative statistical package of PLS-SEM, and analyzed internal consistency reliability, convergent validity, and discriminant validity of the measurement model. The study also analyzed path coefficients and moderator effects of the structural model and compared the results, respectively. The results indicated that R showed the same results with SmartPLS on the measurement model and the structural model. Therefore, the study confirmed that R could be a powerful tool that is alternative to a commercial statistical package in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.