농업은 잦은 자연재해, 코로나 같은 예측하기 힘든 불확실성이 높아지는 상황이며 이를 해결하기 위해 새로운 기술적 접근방안과 돌파구 마련이 필요하다. ICT의 급속한 발전과 4차 산업혁명 시대가 도래하면서 데이터의 중요성은 더욱 커지고 있다. 빅데이터는 농업이 직면한 다양한 기술적 난제를 해결함과 동시에 생산,소비,유통 분야의 밸류체인 혁신을 통해 높은 경쟁력을 확보할 수 있게 핵심 요소가 될 것이다. 실제 농업 분야의 해외 사례를 살펴보면 주로 빅데이터에 대한 수집 분석이 기업을 중심으로 이루어지고 있고 기업의 새로운 가치 창출에 중요한 역할을 담당하고 있어 상업적 측면에서 활용가치가 매우 높음을 알 수 있다. 우리나라도 기업의 빅데이터 활용을 위한 다양한 시도가 이루어지고 있으나 아직은 대기업, 소수의 혁신기술 기반 중소기업이 대부분이다. 기업의 빅데이터 활용에 영향을 미치는 연구는 계속 진행되고 있으나, 산업별 특성이 반영되어 결과는 상이하게 나타났다. 또한 대부분의 연구가 조직 차원에서 초기 도입 의도에 영향을 주는 요인 파악에 집중하였다. 반면 기업이 빅데이터를 활용하여 성과를 창출하기 위해서는 각 분야 현업 종사자들의 지속적인 활용 의도에 영향을 미치는 요인에 관한 연구가 필요하다. 따라서 본 연구는 혁신기술 수용 의도를 파악하는데 높은 설명력을 나타내는 통합기술수용이론(UTAUT)과 혁신성향 변수를 활용하여 농업 관련 기업 종사들의 빅데이터 수용 의도에 미치는 영향 요인들을 살펴보고 경제적 혜택과 실용적 혜택의 매개 효과를 분석하고자 한다. 실제 농업 관련 기업 종사자 대상 설문을 통한 실증 연구를 통해 현장 종사자들의 빅데이터 활용 수준을 높이고 우수의 고급 인력을 확보하여 육성하기 위한 방안을 제시하여 농업관련분야 기업의 빅데이터 활성화 정책 도출에 시사점을 제시하고자 한다.
Systematic studies have been rarely conducted on the acceptance of big data technology despite the technology drawing much attention from academia, industry and general public. With big data technology still being in the infant stage in Korea, a study model was constructed in this paper by integrating the innovation diffusion theory and the task technology fit theory with this technology acceptance model (TAM) as the central framework to make big data technology more readily acceptable in the country, and the aim of making big data technology readily acceptable was expanded as the moderator variable of the TAM. The results of this study showed that "subjective norm" and "task technology fit" showed the most significant effect as the exogenous variables of the TAM. In addition, the "innovative characteristic of the organization" was the significant exogenous variable affecting the intention to accept big data technology to those "technology utilizers" that try to come up with new services or products that are technology-based; however, "subjective norm" was the rather significant factor affecting those simple "technology users". Finally, a significant difference was seen in the verification of mediation effect.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.17
no.1
/
pp.157-175
/
2022
At this moment, a paradigm shift is taking place across all sectors of society for the transition movements to the digital economy. Various movements are taking place in the global agricultural industry to achieve innovative growth using big data which is a key resource of the 4th industrial revolution. Although the government is making various attempts to promote the use of big data, the movement of the agricultural industry as a key player in the use of big data, is still insufficient. Therefore, in this study, effects of performance expectations, effort expectations, social impact, facilitation conditions, based on the Unified Theory of Acceptance and Use of Technology(UTAUT), and innovation tendencies on the acceptance intention of big data were analyzed using the economic and practical benefits that can be obtained from the use of big data for agricultural-related companies as moderating variables. 333 questionnaires collected from agricultural-related companies were used for empirical analysis. The analysis results using SPSS v22.0 and Process macro v3.4 were found to have a significant positive (+) effect on the intention to accept big data by effort expectations, social impact, facilitation conditions, and innovation tendencies. However, it was found that the effect of performance expectations on acceptance intention was insignificant, with social impact having the greatest influence on acceptance intention and innovation tendency the least. Moderating effects of economic benefit and practical benefit between effort expectation and acceptance intention, moderating effect of practical benefit between social impact and acceptance intention, and moderating effect of economic benefit and practical benefit between facilitation condition and acceptance intention were found to be significant. On the other hand, it was found that economic benefits and practical benefits did not moderate the magnitude of the influence of performance expectations and innovation tendency on acceptance intention. These results suggest the following implications. First, in order to promote the use of big data by companies, the government needs to establish a policy to support the use of big data tailored to companies. Significant results can only be achieved when corporate members form a correct understanding and consensus on the use of big data. Second, it is necessary to establish and implement a platform specialized for agricultural data which can support standardized linkage between diverse agricultural big data, and support for a unified path for data access. Building such a platform will be able to advance the industry by forming an independent cooperative relationship between companies. Finally, the limitations of this study and follow-up tasks are presented.
This paper proposes a Big Data system for energy Big Data which is aggregated in real-time from industrial and public sources. The constructed Big Data system is based on Hadoop and the Spark framework is simultaneously applied on Big Data processing, which supports in-memory distributed computing. In the paper, we focus on Big Data, in the form of heat energy for district heating, and deal with methodologies for storing, managing, processing and analyzing aggregated Big Data in real-time while considering properties of energy input and output. At present, the Big Data influx is stored and managed in accordance with the designed relational database schema inside the system and the stored Big Data is processed and analyzed as to set objectives. The paper exemplifies a number of heat demand plants, concerned with district heating, as industrial sources of heat energy Big Data gathered in real-time as well as the proposed system.
How will the field of education react to the big data craze that has recently seeped into every aspect of society? To search for ways to use big data in mathematics education, this study first examined the concept of big data and examples of its application, and then pursued directions for future research in two ways. First, changes in the representation and acceptance of data are required because of changes in technology and the environment. In other words, the learning content and methodology of data treatment need to be changed by describing a myriad amount of data visually or by 'analyzing and inferring' data to provide data efficiently and clearly. Additionally, the mathematics education field needs to foster changes in curricula to facilitate the improvement of students' learning capacity in the 21st century. Second, it is necessary to more actively collect data on general education and not merely on teaching or learning to identify new information, pursue positive changes in the teaching and learning of mathematics, and stimulate interest and research in the field so that it can be used to make policy decisions regarding mathematics education.
Despite the early success story, the pan-industry diffusion of big data has been slow mostly due to lack of confidence of the value creation and privacy-related concerns. The problem leads us to the need to a stakeholder analysis on the adoption process of big data. The present study combines technology acceptance model, task-technology fit theory, and privacy calculus theory to integrate the positive and negative factors on the big data adoption. The empirical analysis was performed based on the survey from the current and potential big data users. Results revealed perceived usefulness, task-technology fit, and privacy concern are significant antecedents to the intention to use big data. Furthermore, there are significant differences in the perceptions of each constructs among groups divided by the types of big data use, with several exceptions. And the control effect was found in the magnitude of the relation between independent variables and dependent variable. The theoretical and politic implications of the analysis are discussed as to the promotion of big data industry.
The major thrust of this research focuses on the development of phased big data distribution model based on the big data ecosystem. This model consists of 3 phases. In phase 1, data intermediaries are participated in this model and transaction functions are provided. This system consists of general control systems, registrations, and transaction management systems. In phase 2, trading support systems with data storage, analysis, supply, and customer relation management functions are designed. In phase 3, transaction support systems and linked big data distribution portal systems are developed. Recently, emerging new data distribution models and systems are evolving and substituting for past data management system using new technology and the processes in data science. The proposed model may be referred as criteria for industrial standard establishment for big data distribution and transaction models in the future.
The general public is a key stakeholder in the science and technology domain. However, traditional approaches require substantial efforts and resources to analyze how does the general public understand science and technology issues. We applied the topic modeling, a form of text clustering, to the texts about the nuclear power which were posted on an online space in order to explore the general public's thoughts on the issue. This study investigates the extent to which macro-level events influence understandings of the general public on the science and technology issues and weather these changes in understandings are sustained over time. It examines the possibility of applying topic modeling in narrowing a perception gap between the general public and the experts through a near-real-time monitoring of the public interests and perceptions about the science and technology issues.
Korean Journal of Construction Engineering and Management
/
v.23
no.2
/
pp.54-64
/
2022
Since the interest in big data is growing exponentially, various types of research and development in the field of big data have been conducted in the construction industry. Among various application areas, cost estimating can be a topic where the use of big data provides positive benefits. In order for firms to make efficient use of big data for estimating tasks, they need to establish a strategy based on the multifaceted analysis of internal and external environments. The objective of the study is to develop and propose a strategy of the use of big data for construction management(CM) firms' cost estimating tasks based on the SWOT analysis. Through the combined efforts of literature review, questionnaire survey, interviews and the SWOT analysis, the study suggests that CM firms need to maintain the current level of the receptive culture for the use of big data and expand incrementally information resources. It also proposes that they need to reinforce the weak areas including big data experts and practice infrastructure for improving the big data-based cost estimating.
디지털 플랫폼을 기반으로 한 벤처를 성공적으로 육성하려면 빅데이터와 인공지능 알고리즘을 바탕으로 한 비즈니스 모델이 사회적으로 적합한 형태로 수용되어야 한다. 그러나 디지털 벤처가 데이터와 알고리즘 활용에 있어 공정한가에 대한 의구심과 도전이 지속되고 있으며 이와 관련된 연구 노력도 부족한 실정이다. 본 연구는 온라인 유통 플랫폼 벤처로 급격히 성장한 쿠팡이 직면한 도전을 통해 빅데이터와 알고리즘 기반의 비즈니스 수행에 따른 어려움과 이에 대한 이론적 고찰을 시도했다. 쿠팡의 도전을 알고리즘, 빅데이터, 자동 최저가 매칭 시스템, 그리고 오프라인 업체의 비교 데이터 활용에 관한 문제로 정리했다. 이들 각각에 대하여 의무 범위론의 관점에서 문제 해결의 실마리를 제시하였다. 본 연구는 쿠팡의 자체 브랜드 출시를 배경으로 디지털 플랫폼 기반의 벤처 기업이 성장하면서 제기되는 사회적 도전 과제들을 검토함으로써 지속가능성을 유지하기 위한 전략적 고민과 실천적 연구 노력이 뒤따를 필요성을 환기시킨다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.