• Title/Summary/Keyword: 비 지역적 평균 기법

Search Result 157, Processing Time 0.025 seconds

Development and application of GLS OD matrix estimation with genetic algorithm for Seoul inner-ringroad (유전알고리즘을 이용한 OD 추정모형의 개발과 적용에 관한 연구 (서울시 내부순환도로를 대상으로))

  • 임용택;김현명;백승걸
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.117-126
    • /
    • 2000
  • Conventional methods for collecting origin-destination trips have been mainly relied on the surveys of home or roadside interview. However, the methods tend to be costly, labor intensive and time disruptive to the trip makers, thus the methods are not considered suitable for Planning applications such as routing guidance, arterial management and information Provision, as the parts of deployments in Intelligent Transport Systems Motivated by the problems, more economic ways to estimate origin-destination trip tables have been studied since the late 1970s. Some of them, which have been estimating O-D table from link traffic counts are generally Entropy maximizing, Maximum likelihood, Generalized least squares(GLS), and Bayesian inference estimation etc. In the Paper, with user equilibrium constraint we formulate GLS problem for estimating O-D trips and develop a solution a1gorithm by using Genetic Algorithm, which has been known as a g1oba1 searching technique. For the purpose of evaluating the method, we apply it to Seoul inner ringroad and compare it with gradient method proposed by Spiess(1990). From the resu1ts we fond that the method developed in the Paper is superior to other.

  • PDF

Analysis of Future Land Use and Climate Change Impact on Stream Discharge (미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석)

  • Ahn, So Ra;Lee, Yong Jun;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.215-224
    • /
    • 2008
  • The effect of streamflow considering future land use change and vegetation index information by climate change scenario was assessed using SLURP (Semi-distributed Land-Use Runoff Process) model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for the upstream watershed ($260.4km^2$) of Gyeongan water level gauging station. By applying CA-Markov technique, the future land uses (2030, 2060, 2090) were predicted after test the comparison of 2004 Landsat land use and 2004 CA-Markov land use by 1996 and 2000 land use data. The future land use showed a tendency that the forest and paddy decreased while urban, grassland and bareground increased. The future vegetation indices (2030, 2060, 2090) were estimated by the equation of linear regression between monthly NDVI of NOAA AVHRR images and monthly mean temperature of 5 years (1998-2002). Using CCCma CGCM2 simulation result based on SRES A2 and B2 scenario (2030s, 2060s, 2090s) of IPCC and data were downscaled by Stochastic Spatio-Temporal Random Cascade Model (SST-RCM) technique, the model showed that the future runoff ratio was predicted from 13% to 34% while the runoff ratio of 1999-2002 was 59%. On the other hand, the impact on runoff ratio by land use change showed about 0.1% to 1% increase.

Comparative Assessment of Linear Regression and Machine Learning for Analyzing the Spatial Distribution of Ground-level NO2 Concentrations: A Case Study for Seoul, Korea (서울 지역 지상 NO2 농도 공간 분포 분석을 위한 회귀 모델 및 기계학습 기법 비교)

  • Kang, Eunjin;Yoo, Cheolhee;Shin, Yeji;Cho, Dongjin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1739-1756
    • /
    • 2021
  • Atmospheric nitrogen dioxide (NO2) is mainly caused by anthropogenic emissions. It contributes to the formation of secondary pollutants and ozone through chemical reactions, and adversely affects human health. Although ground stations to monitor NO2 concentrations in real time are operated in Korea, they have a limitation that it is difficult to analyze the spatial distribution of NO2 concentrations, especially over the areas with no stations. Therefore, this study conducted a comparative experiment of spatial interpolation of NO2 concentrations based on two linear-regression methods(i.e., multi linear regression (MLR), and regression kriging (RK)), and two machine learning approaches (i.e., random forest (RF), and support vector regression (SVR)) for the year of 2020. Four approaches were compared using leave-one-out-cross validation (LOOCV). The daily LOOCV results showed that MLR, RK, and SVR produced the average daily index of agreement (IOA) of 0.57, which was higher than that of RF (0.50). The average daily normalized root mean square error of RK was 0.9483%, which was slightly lower than those of the other models. MLR, RK and SVR showed similar seasonal distribution patterns, and the dynamic range of the resultant NO2 concentrations from these three models was similar while that from RF was relatively small. The multivariate linear regression approaches are expected to be a promising method for spatial interpolation of ground-level NO2 concentrations and other parameters in urban areas.

Change Detection Using Image Differencing Method in Pyeongtaeg City (화상간(畵像間) 차이법(差異法)을 활용한 평택시 지역 지표면(地表面) 변화탐지(變化探知))

  • Rim, Sang-Kyu;Kim, Moo-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.185-195
    • /
    • 2002
  • The purpose of this study is to evaluate and seek the best suitable band and threshold boundary level on the change detection of image differencing method using Landsat TM data(20 May 1987 and 20 May 1993) in Pyeongtaeg City. The change detection images differencing method were evaluated by using normal reference data with an optimal threshold level{$mean{\pm}(SD{\times}T$ value). The normal reference data consisted of positive change{change dark into light in image pattern, that is, it changed arable land(paddy, upland, forest and so on) to artificial area(buildings, vinyl-house and roads, etc)} and negative change(change light into dark in image pattern, that is, it changed artificial area into arable land). As the result, the kappa coefficients of visible bands(D1, D2 and D3) were higher than those of infrared bands(D4, D5 and D7), and than D1 image with 1.0 thresholding and normal reference data was a improved result in the land-surface change detection such as kappa coefficient : 68.4%, overall accuracy : 89.2%, negative change : 6.6%, positive change : 10.6%.

A Study on Management Condition and Improvement of Artificial Greens in GBCS-Certified Apartments through the Post Occupancy Evaluation (POE를 통한 친환경건축물 인증 공동주택 인공환경 녹화 관리 실태 및 개선방안 연구)

  • Kim, Bo-Ram;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.1-12
    • /
    • 2012
  • This study aims to suggest ways to improve sustainability on housing complexes. This study sampled eight housing projects in Seoul and GyeongGi-Do in Korea, which were completed in June 2007 and June 2008. Then, are retention and maintenance on "constructed greens for ecological environment" including "green structures substitutes retaining walls", "green roofs", and "green walls." Study methods are field investigations of the sampled sites, and Post Occupancy Analysis. Major findings were; 1) "constructed greens" are not well retained in more sites and and this implies the GBCS(Green Building Certification System) does not meet its objectives well, 2) User showed lower user satisfaction to "constructed greens". User satisfaction concerning "green structures substitute retaining walls" was higher than the satisfaction on the other constructed green type. Satisfaction Assessment Criteria lower 1han average were "level of quality", "meet the design objectives", "vegetation management status", "vegetation maintenance". 3) User satisfaction was strongly correlated on the level of quality factor of "constructed green". In addition, tue other factors are the significant correlations between the satisfactions. The present GBCS has inadequate assessment standards for maintenance, which lead to lower the entire satisfaction. Therefore, periodic recertification system, education and information providing for the managing personals, and incentives for good maintenance or disincentive for poor maintenance of the "constructed greens" are suggested to improve the GBCS.

Seasonal Precipitation Prediction using the Global model (전지구 모델 GME를 이용한 계절 강수 예측)

  • Kim, In-Won;Oh, Jai-Ho;Hong, Mi-Jin;Huh, Mo-Rang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.351-351
    • /
    • 2011
  • 최근 지구온난화와 더불어 이상기후가 대두됨에 따라 기상 예측이 더욱더 중요시되고 있다. 또한 이전부터 가뭄 및 홍수와 같은 기상현상으로 인한 피해 사례가 빈번하였으며, 이로 인하여 물 관리의 어려움을 겪고 있다. 한 예로 이상기후가 유난히 잦았던 2010년 여름철 경우 평년보다 발달한 북태평양고기압의 영향으로 여름철 92일 가운데 81일의 전국 평균기온이 평년보다 높게 나타났다. 또한 강우 일수가 평년에 비해 7.4일 많은 44.2일을 기록하였으며, 국지성 집중호우 사례가 빈번하였다. 또한 8월 9일 발생한 태풍 `뎬무'를 포함해서 한 달 동안 3개의 태풍이 한반도에 영향을 끼치는 이례적인 사례가 발생하였다. 따라서 본 연구는 이러한 기상재해에 따른 물 관리를 장기적으로 대비하고자 고해상도 전지구 모델 GME를 이용하여 2010년 여름철 강수 예측을 실시하였다. 강수 예측에 사용된 전지구 모델 GME는 기존의 카테시안 격자체계를 가진 모델과 달리 전구를 삼각형으로 구성된 20면체로 격자화 한 Icosahedral-hexagonal grid 격자체계로 구성되어 있어, 해상도 증가에 용이할 뿐만 아니라, HPC(High Performance Computing)환경에서 효율성이 높은 장점을 가지고 있다. 본 계절 예측을 수행함에 있어 발생하는 잡음을 최소화하고자, Time-lag 기법을 이용하여 5개의 앙상블 멤버로 구성되어있으며, 이를 비교 분석하기위해 Climatology를 이용하여 총 10개의 앙상블 멤버로 규준실험을 수행하였다. 선행 연구에 따르면 1개월 이상의 장기 적분의 경우 초기조건보다 외부 강제력이 더 중요한 역할을 한다고 연구된 바 있다. (Yang et al., 1998) 특히 계절 변동성의 경우 대기-해양간의 상호작용에 의해 지배되며, 이를 고려하여 본 연구는 해수면 온도를 경계 자료로 사용하여 계절 예측을 수행하였다. 앞서 말한 실험 계획을 바탕으로 하여 나온 결과를 통해 동아시아지역 및 한반도 도별 강수 및 온도 변수에 대해 순별 및 월별 카테고리맵 분석을 실시하여 한눈에 보기 쉽게 나타냈다. 또한 주요 도시별 강수량 및 온도의 시계열 분석을 실시하여 시간이 지남에 따라 나타나는 변동성을 확인하였다. 계절 예측 결과에서 온도의 경우 평년보다 높게 나타났으며, 이는 실제 온도 예측과도 유사한 패턴을 가졌다, 강수의 경우 7월부터 8월 중순까지 평년보다 다소 적게 모의되었으며, 8월 하순경 회복하는 것으로 예측하였다. 따라서 본 계절 강수 예측은 다소 역학 모델이 가지는 한계를 가지고 있으나, 실제와 비교하여 어느 정도의 경향성이나 패턴에 있어 유사성을 보임을 확인하였으며, 이를 장기적 차원의 물관리를 함에 있어 참고 및 활용 가능할 것으로 예상한다.

  • PDF

Geological Characteristics of Extra Heavy Oil Reservoirs in Venezuela (베네주엘라 초중질유 저류층 지질 특성)

  • Kim, Dae-Suk;Kwon, Yi-Kyun;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.83-94
    • /
    • 2011
  • Extra heavy oil reservoirs are distributed over the world but most of them is deposited in the northern part of the Orinoco River in Venezuela, in the area of 5,500 $km^2$, This region, which has been commonly called "the Orinoco Oil Belt", contains estimated 1.3 trillion barrels of original oil-in-place and 250 billion barrels of established reserves. The Venezuela extra heavy oil has an API gravity of less than 10 degree and in situ viscosity of 5,000 cP at reservoir condition. Although the presence of extra heavy oil in the Orinoco Oil Belt has been initially reported in the 1930's, the commercial development using in situ cold production started in the 1990's. The Orinoco heavy oil deposits are clustered into 4 development areas, Boyaco, Junin, Ayachoco, and Carabobo respectively, and they are subdivided into totally 31 production blocks. Nowadays, PDVSA (Petr$\'{o}$leos de Venzuela, S.A.) makes a development of each production block with the international oil companies from more than 20 countries forming a international joint-venture company. The Eastern Venezuela Basin, the Orinoco Oil Belt is included in, is one of the major oil-bearing sedimentary basins in Venezuela and is first formed as a passive margin basin by the Jurassic tectonic plate motion. The major source rock of heavy oil is the late Cretaceous calcareous shale in the central Eastern Venezuela Basin. Hydrocarbon materials migrated an average of 150 km up dip to the southern margin of the basin. During the migration, lighter fractions in the hydrocarbon were removed by biodegradation and the oil changed into heavy and/or extra heavy oil. Miocene Oficina Formation, the main extra heavy oil reservoir, is the unconsolidated sand and shale alternation formed in fluvial-estuarine environment and also has irregularly a large number of the Cenozoic faults induced by basin subsidence and tectonics. Because Oficina Formation has not only complex lithology distribution but also irregular geology structure, geological evolution and characteristics of the reservoirs have to be determined for economical production well design and effective oil recovery. This study introduces geological formation and evolution of the Venezuela extra heavy oil reservoirs and suggest their significant geological characteristics which are (1) thickness and geometry of reservoir pay sands, (2) continuity and thickness of mud beds, (3) geometry of faults, (4) depth and geothermal character of reservoir, (5) in-situ stress field of reservoir, and (6) chemical composition of extra heavy oil. Newly developed exploration techniques, such as 3-D seismic survey and LWD (logging while drilling), can be expected as powerful methods to recognize the geological reservoir characteristics in the Orinoco Oil Belt.

Real-time Recognition and Tracking System of Multiple Moving Objects (다중 이동 객체의 실시간 인식 및 추적 시스템)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7C
    • /
    • pp.421-427
    • /
    • 2011
  • The importance of the real-time object recognition and tracking field has been growing steadily due to rapid advancement in the computer vision applications industry. As is well known, the mean-shift algorithm is widely used in robust real-time object tracking systems. Since the mentioned algorithm is easy to implement and efficient in object tracking computation, many say it is suitable to be applied to real-time object tracking systems. However, one of the major drawbacks of this algorithm is that it always converges to a local mode, failing to perform well in a cluttered environment. In this paper, an Optical Flow-based algorithm which fits for real-time recognition of multiple moving objects is proposed. Also in the tests, the newly proposed method contributed to raising the similarity of multiple moving objects, the similarity was as high as 0.96, up 13.4% over that of the mean-shift algorithm. Meanwhile, the level of pixel errors from using the new method keenly decreased by more than 50% over that from applying the mean-shift algorithm. If the data processing speed in the video surveillance systems can be reduced further, owing to improved algorithms for faster moving object recognition and tracking functions, we will be able to expect much more efficient intelligent systems in this industrial arena.

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.

A Perspective on the Sustainability of Soil Landscape Based on the Comparison between the Pre-Anthropocene Soil Production and Late 20th Century Soil Loss Rates (인류세 이전 토양생성률과 20세기 후반 토양유실률 비교를 통한 토양경관 지속가능성 전망)

  • Byun, Jongmin;Seong, Yeong Bae
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.2
    • /
    • pp.165-183
    • /
    • 2015
  • It is well known that, since the 15th century, the amount of soil loss in our country due to change in land use by human has increased more rapidly than ever before. However we cannot answer the question 'How long can the soil persist under the current rates of soil loss?', because it was difficult to quantify the soil production rate. With the advancement of accelerated mass spectrometry, the attempt to quantify rate of soil production and derive soil production function succeeded, and recently it was also applied into the Daegwanryeong Plateau. Here we introduce the principles for quantifying soil production and deriving soil production function using terrestrial cosmogenic nuclides, and then compare the soil production rates from the plateau with soil loss data after the late 20th century, and finally estimate how long the soil can persist. Averaged soil production rate since the Holocene derived from the plateau is revealed as ${\sim}0.05[mm\;yr^{-1}]$, and, however, the recent soil loss rate of intensively used farmlands at the same region is up to sixty times greater than the soil production rate. Thus, if current land use system is maintained, top soils on the cultivated lands over hillslopes especially in upland areas are expected to disappear within several decades at the earliest.

  • PDF