• 제목/요약/키워드: 비 시계열

검색결과 795건 처리시간 0.027초

IoT 환경에서 예측 정확도 향상을 위한 계절성 비선형 시계열 알고리즘 설계 (Design of Seasonal Nonlinear Time Series Algorithm for Improving Forecast Accuracy in IoT Environment)

  • 강정구;박석천;김종현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.645-648
    • /
    • 2015
  • ICT 시대를 맞아 하루가 다르게 새로운 기술이 등장하고 있으며, 최근에는 사물인터넷 시대까지 도래하였다. 하지만 현재 사물인터넷에서 폭발적으로 발생되는 시계열 데이터를 분석하는 연구는 미비한 상태이다. 따라서 본 논문에서는 사물인터넷에서 발생되는 시계열 데이터의 예측 정확도 향상을 위해 사계절이 뚜렷한 우리나라의 계절성 특성을 고려한 SARIMA알고리즘과 비선형 특성 예측 알고리즘인 SVM을 결합한 하이브리드 SARIMA-SVM알고리즘을 제안 한다.

적대적 생성망을 이용한 부동산 시계열 데이터 생성 방안 (A Methodology for Realty Time-series Generation Using Generative Adversarial Network)

  • 유재필;한창훈;신현준
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.9-17
    • /
    • 2021
  • 최근 빅데이터 분석, 인공지능, 기계학습 등의 발전으로 인해서 데이터를 과학적으로 분석하는 기술이 발전하고 있으며 이는 의사결정 문제를 최적으로 해결해주고 있다. 그러나 특정 분야의 경우에는 데이터의 양이 부족해서 과학적 방식에 적용하는 것이 어렵다. 예컨대 부동산과 같은 데이터는 데이터 발표 시점이 최근이거나 비 유동성 자산이다 보니 발표 주기가 긴 경우가 많다. 따라서 본 연구에서는 이런 문제점을 극복하기 위해서 TimeGAN 모형을 통해 기존의 시계열의 확장 가능성에 대해서 연구하고자 한다. 이를 위해 부동산과 관련된 총 45개의 시계열을 데이터 셋에 맞게 2012년부터 2021년까지 주 단위로 데이터를 수집하고 시계열 간의 상관관계를 고려해서 총 15개의 최종 시계열을 선정한다. 15개의 시계열에 대해서 TimeGAN 모형을 통해 데이터 확장을한 결과, PCA 및 T-SNE 시각화 알고리즘을 통해 실제 데이터와 확장 데이터 간의 통계적 분포가 유사하다는 것을 확인할 수 있었다. 따라서 본 논문을 통해서 데이터의 과적합 또는 과소적합이라는 한계점을 극복할 수 있는 다양한 실험이 연구되기를 기대한다.

HyGIS-HMS를 이용한 유역 수문유출 특성 해석 (Analysis of Hydrologic Runoff on Watershed using HyGIS-HMS)

  • 김경탁;박대희;한건연
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1344-1348
    • /
    • 2008
  • HMS(Hydrological Modelling system)는 유역의 지형자료와 강우와 같은 기상관련 시계열 자료 등 수문 유출과 관련되는 많은 매개변수를 포함하고 있으며, 모형의 구동을 위해서는 다양한 공간 비공간 자료 및 시계열 자료가 요구된다. 특히 다양한 비공간 정보의 경우 이를 모형에 적용하기 위해서는 비공간 정보에 대한 열람, 선택, 편집, 적용 시나리오의 설정, 입력변수의 적절성 평가, 모형 구동결과의 검 보정 등 복잡한 절차가 필요하다. 최근 들어 공간자료의 효율적 처리를 위해서 지리정보시스템과 수리 수문모델들 간의 연계를 통한 자료 생성과 입력 및 분석과정을 일괄적으로 처리하고자 하는 연구들이 발표되고 있다. 본 연구에서는 한국형 수자원지리정보시스템인 HyGIS와 HMS 모형의 연계 시스템인 HyGIS-HMS의 개t선과 적용성 평가를 목표로 하고 있다. 이를 위하여 HyGIS-HMS 데이터 모델을 기반으로 하는 시스템의 운영 프로세스를 재정립하였다. HyGIS에서 구축된 공간 DB를 이용하여 HMS 모형의 입력 지형인자를 계산하고 있으며, 수문시계열 자료는 HyGIS의 시계열 DB를 이용하고 있다. HMS에서는 공간 자료와 시계열 자료 외에도 다양한 비공간 자료를 이용하고 있다. 이러한 비공간 정보를 DB기반 시스템에 맞추어 효과적으로 관리 및 사용하기 위하여 HyGIS-HMS에서는 Static DB를 이용하고 있으며, Static DB에서 모형의 입력자료로 직접 이용되는 자료와 모형의 수행결과는 Dynamic DB를 이용하고 있다. 또한 개발된 시스템을 경안천 유역에 적용하여 2006년과 2007년의 유출특성을 분석하였다. 이러한 개발환경의 적용을 통해 HyGIS 데이터모델과 HyGIS-Model의 운영환경이 HyGIS-HMS개발에 효과적으로 이용될 수 있는 것으로 나타났다.

  • PDF

COVID-19 사례를 통한 도시 내 비정상적 수요 예측을 위한 시계열 모형 파이프라인 개발 연구 (Time Series Modeling Pipeline for Urban Behavioral Demand Prediction under Uncertainty)

  • 진민수;이동우;김영록;이현수
    • 한국ITS학회 논문지
    • /
    • 제22권2호
    • /
    • pp.80-92
    • /
    • 2023
  • 도시에 많은 사람들이 밀집하여 살아가면서 기존에 예측하지 못했던 범죄, 사고, 감염병 등의 비정상 이벤트가 발생은 도시 내 이용자 수요에 영향을 미치게 된다. 이러한 불확실성(uncertainty)이 내포된 정보를 기반으로 도시 내 이용자 수요에 대한 시계열적 예측을 수행한다면 신뢰성 있는 결과 도출이 불가능하다. 특히, 2020년 초 발발한 COVID-19는 비정상적인 이동통행패턴의 변화를 불러 일으키며 시계열 수요예측을 어렵게 만들었기에 이러한 변화를 검지하고 이를 반영하여 정확한 수요를 예측 수행할 수 있는 방법론의 필요성이 대두되고 있다. 이에 본 연구는 COVID-19로 인한 비정상적 이벤트를 자동으로 검지하고 예측하는 모형 파이프라인을 구축하였다. 이는 도시 내 다양한 분야에서의 불규칙적이고 비정상적인 이벤트로 인한 수요변화가 일어나는 상황에 폭넓게 활용될 수 있을 것으로 생각된다.

힐버트-황 변환에 통한 Hand Accelerometer 데이터의 핵심 패턴 추출 (Applying Hilbert-Huang Transform to Extract Essential Patterns from Hand Accelerometer Data)

  • 최병석;서정열
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.179-190
    • /
    • 2017
  • Hand Accelerometer는 인간신체 운동 패턴을 실시간으로 파악하는데 널리 사용되고 있다. 그러므로 행동 유형을 정확하게 파악하는 것은 아주 중요하다. 이 과정에서 각 행동유형의 형태를 미리 정확하게 파악하는 것이 중요하다. 인간의 신체 행동은 센서를 통해 수집된 시계열 데이터로 표현된다. 이 데이터는 비안정적, 비선형적 성격을 가지고 있다. 그래서 이런 성격의 데이터의 유형을 효율적으로 추출하는 방법을 찾는 것은 매우 중요하다. 힐버트-황 변환은 비안정적 비선형적 요소를 시계열데이터에서 효율적으로 추출하는 방법이다. 이 방법을 위의 시계열 데이터에 적용한 결과 핵심패턴이 성공적으로 추출되었다.

시계열 데이타베이스의 인덱스 보간법을 기반으로 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘 (An Index-Based Subsequence Matching Algorithm Supporting Normalization Transform in Time-Series Databases)

  • 노웅기;감상욱;황규영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.152-154
    • /
    • 2000
  • 본 논문에서는 시계열 데이터베이스에서 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 정규화 변환은 시계열 데이터간의 절대적인 유클리드 거리에 관계없이, 구성하는 값들의 상대적인 변화 추이가 유사한 패턴을 갖는 시계열 데이터를 검색하는 데에 유용하다. 제안된 알고리즘은 몇 개의 질의 시퀀스 길이에 대해서만 각각 인덱스를 생성한 후, 이를 이용하여 모든 가능한 길이의 질의 시퀀스에 대해서 탐색을 수행한다. 이때, 착오 기각이 발생하지 않음을 증명한다. 본 논문에서는 이와 같이 인덱스가 요구되는 모든 경우 중에서 적당한 간격의 일부에 대해서만 생성된 인덱스를 이용한 탐색 기법을 인덱스 보간법이라 부른다. 질의 시퀀스의 길이 256~512 중 다섯 개의 길이에 대해 인덱스를 생성하여 실험한 결과, 탐색 결과를 선택률이 10-5일 때 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 평균 14.6배 개선되었다.

  • PDF

Unit Root Test를 기반으로 한 장기 시계열 데이터의 non-stationary 발생에 따른 추세 변화 검정 및 시각화 연구 (A Study on the Test and Visualization of Change in Trends associated with the Occurrence of Non-stationary of Long-term Time Series Data based on Unit Root Test)

  • 유재성;주재걸
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.398-402
    • /
    • 2018
  • 비정상(non-stationary) 장기 시계열 안에서도, 단기적으로 추세의 변화가 일시적인 것인지, 아니면 구조적으로 변한 것인지를 적시에 판단하는 것은 중요하다. 이는 시계열 추세의 변화를 상시 감지하여, 변화에 맞는 적정한 수준의 대응을 할 필요가 있기 때문이다. 본 연구에서는 장기 시계열이 주어진 상황에서, 단위근 검정법을 기반으로 단기적으로 구조변화를 감지하여, 이러한 변화가 얼마나 지속될 것인지를 시각적으로 판단할 수 있는 방법을 제시하고자 한다.

한국주식수익률의 시계열상관에 대한 원인분석

  • 김동회;곽철효;정정현
    • 재무관리연구
    • /
    • 제14권3호
    • /
    • pp.23-56
    • /
    • 1997
  • 본 연구는 주식의 시장가치와 거래빈도, 기관지분비율, 거래량 등에 따라 주식수익률의 시계열상관이 일정한 패턴을 갖는 것으로 나타나고 있다는 사실을 실증적으로 확인하고, 주식수익률의 시계열상관에 주된 영향을 미치는 요인을 횡단면 분석방법을 이용하여 살펴보고 있다. 1985년부터 1995년까지의 기간에 걸친 일별수익률자료를 이용하여 분석한 결과를 요약하면, 1) 규모, 거래빈도, 기관지분비율, 거래량 등이 작은 주식들로 구성된 포트폴리오일수록 수익률이 강한 양의 자기상관을 갖게 되며, 또한 그러한 변수들의 크기가 큰 주식들로 구성된 포트폴리오의 수익률에 대하여 후행하는 관계에 있다는 보여주고 있다. 2) Lo and MacKinlay(1990a)의 비거래모형을 이용한 분석결과에서는 한국주식수익률의 시계 및 상관이 전적으로 비거래로 인하여 나타나는 현상이 아니라는 것을 보여주고 있다. 3) 시계열상관의 정도를 나타내는 후행척도를 상기한 변수들에 대하여 회귀분석한 결과는 모든 변수들이 주식수익률의 시계열상관에 동시적으로 영향을 주고 있다는 것을 보여준다. 특히 시계열상관을 야기하는 요인들 중에서 거래빈도는 분석기간에 관계없이 항상 시계열상관에 음의 영향을 미치는 것으로 나타나고 있다. 기관지분비율과 거래량은 분명히 시계열상관에 음의 영향을 미치지만, 분석기간에 따라 유의성에 다소 차이를 보여주고 있다. 수익률의 변동성은 전반기의 경우에 시계열상관과 음의 관계를, 후반기의 경우에는 양의 관계를 갖는 것으로 나타나고 있다. 이러한 검증결과들로 미루어, 한국주식수익률의 시계열상관은 주가의 반응에 영향을 주게되는 시장구조나 투자패턴 등이 전 후반기에 있어서 서로 다르기 때문에 나타나는 현상으로 보인다.력(事前賣却努力)이 협의발행하에서 더 높았으나 발행일 직후의 주가회복은 보이지 않아 인수방식에 따른 가격안정화(價格安定化) 노력의 차이는 없었다. 발행기업들간의 주가차별화의 정도를 분석한 결과 협의발행에서 인회활동(認淮活動) (certification effects)을 더 잘 할 수 있다는 사실을 지지하지 못했다.범위(範圍)에 벗어나 한국주식시장(韓國株式市場)에서 주식시장(株式市場)의 비효율성(非效率性)을 배제할 수 없는 것으로 나타났다. 뿐만 아니라 차기에도 이어지고 화폐량과 소득이 주가의 결정에 영향을 미치고 있으며 다른 금융변수(金融變數)들은 영향을 미치지 않고 있다. 그러나 실질화폐잔고와 실질주가 장단기수익비율 화폐차등수익률과 소득변화률과는 장기적(長期的) 정상적(定常的) 균형관계(均衡關係)를 형성하고 있다. 따라서 장기적 관점에서 증권시장은 경제성장을 위한 통화정책과 각 분야의 균형적 성장을 유발할 수 있는 재정정책(財政政策)이 요청되고 있다. 위의 논의에서 유추할 수 있는 것은 화폐의 영향을 완화시키기 위하여 option시장의 개발과 농산물, 광물, 기타 실물 및 금융에 대한 선물시장의 개설이 요청된다. 이와 같은 시장을 통하여 통화 정책이 증권시장에 미치는 과도한 효과를 축소시켜 합리적이고 건전한 증권시장(證券市場)의 발전(發展)과 금융시장(金融市場)의 원활한 발전이 이룩될 수 있을 것이다. 자본시장이론(資本市場理論)에서는 화폐는 무시하고 실물적인 관점에서 증권가격의 결정을 연구하거나 위험분석에 주안점이 주어져 왔었다. 본 연구를 통하여 통화정책의 결과가 자본시장에 직접적으로 영향을 미치고 있음을 확인하였다. 통화금융정책과 주가의 유기적 관계를 확인한 본 논문의 결과를 정책당국이 참고하여

  • PDF

BIM 기반의 설계단계 원가예측 시계열모델 -자재가격을 중심으로- (BIM Based Time-series Cost Model for Building Projects: Focusing on Construction Material Prices)

  • 황성주;박문서;이현수;김현수
    • 한국건설관리학회논문집
    • /
    • 제12권2호
    • /
    • pp.111-120
    • /
    • 2011
  • 최근 도심지 고밀화에 따른 공간의 효율적 이용이 요구됨에 따라 대규모의 고층 사무공간이 증가하고 있으며, 이와 함께 주거, 상업, 문화 등 다양한 기능을 밀접하게 연관시킨 고층 복합시설도 점차 늘어가고 있다. 이러한 대형 건설, 프로젝트는 긴 공사기간이 소요되어 공사비 예측이 쉽지 않으며, 막대한 비용이 투입되기 때문에 비용 예측의 중요성이 더욱 증대되고 있다. 이러한 상황에서 최근 극심한 경제변화에 따른 건설자재가격의 변동은 자재비를 포함한 공사비 예측을 어렵게 만드는 주요 원인이다. 따라서 본 연구는 건설자재단가 시계열자료를 활용, 미래의 자재단가 예측을 위한 시계열모델을 구축하고 복잡한 모델 프로세스를 간소화하는 자재별 최적 예측모델 도출시스템을 구축한다. 또한 Building Information Modeling(BIM)의 접근을 통해 자재의 투입시기 및 투입물량을 분석, 시계열모델을 통해 예측한 자재단가 예측 값과 조합함으로써 총 자재비를 포함하는 BIM기반 공사원가 예측 시계열모델을 제시한다. 본 연구는 시계열모델의 하나인 Autoregressive Integrated Moving Average(ARIMA)모델에 대한 예측력 비교를 통해 자재단가 예측을 위한 적합모델을 도출하였다. BIM기반의 원가예측 시계열모델은 자재의 투입시기별 자재단가 변동치를 예측함으로써 급변하는 경제 환경 변화에 대처할 수 있는 도구가 될 것이다.

시계열 데이터에 적합한 다단계 비정상 탐지 시스템 설계 (Design of Multi-Level Abnormal Detection System Suitable for Time-Series Data)

  • 채문창;임혁;강남희
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1-7
    • /
    • 2016
  • 새로운 정보통신 기술의 발전과 더불어 보안 위협도 나날이 지능화 고도화되고 있다. 본 논문은 네트워크 장치나 사물인터넷 경량 장치에서 일련의 주기를 통해 연속적으로 입력되는 시계열 데이터를 통계적 기법을 활용하여 분석하고, 분석 정보를 기반으로 장치의 이상 유무나 비정상 징후를 탐지할 수 있는 시스템을 제안한다. 제안 시스템은 과거에 입력된 데이터를 기반으로 1차 비정상 탐지를 수행하고, 시간 속성이나 그룹의 속성을 기반으로 저장되어있는 시계열 데이터를 기반으로 신뢰구간을 설정하여 2차 비정상 탐지를 수행한다. 다단계 분석은 판정 데이터의 다양성을 통해 신뢰성을 향상시키고 오탐율을 줄일 수 있다.