• Title/Summary/Keyword: 비 시계열

Search Result 795, Processing Time 0.028 seconds

Analysis of Intrinsic Patterns of Time Series Based on Chaos Theory: Focusing on Roulette and KOSPI200 Index Future (카오스 이론 기반 시계열의 내재적 패턴분석: 룰렛과 KOSPI200 지수선물 데이터 대상)

  • Lee, HeeChul;Kim, HongGon;Kim, Hee-Woong
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.119-133
    • /
    • 2021
  • As a large amount of data is produced in each industry, a number of time series pattern prediction studies are being conducted to make quick business decisions. However, there is a limit to predicting specific patterns in nonlinear time series data due to the uncertainty inherent in the data, and there are difficulties in making strategic decisions in corporate management. In addition, in recent decades, various studies have been conducted on data such as demand/supply and financial markets that are suitable for industrial purposes to predict time series data of irregular random walk models, but predict specific rules and achieve sustainable corporate objectives There are difficulties. In this study, the prediction results were compared and analyzed using the Chaos analysis method for roulette data and financial market data, and meaningful results were derived. And, this study confirmed that chaos analysis is useful for finding a new method in analyzing time series data. By comparing and analyzing the characteristics of roulette games with the time series of Korean stock index future, it was derived that predictive power can be improved if the trend is confirmed, and it is meaningful in determining whether nonlinear time series data with high uncertainty have a specific pattern.

Fuzzy System Optimization Based on RCGKA and its Application to Time Series Prediction (RCGKA기반 퍼지 시스템 최적화 및 시계열 예측 응용)

  • Bang, Young-Keun;Shim, Jae-Sun;Park, Jong-Kuk;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1644_1645
    • /
    • 2009
  • 본 논문은 비정상 시계열 예측을 위한 다중모델 퍼지 시스템과, 제안된 시스템의 최적화를 위한 유전 알고리즘의 응용을 다룬다. 일반적으로, 퍼지 예측시스템의 성능은 비선형 데이터가 가지고 있는 다양한 패턴이나 법칙성, 경향 등을 잘 분석하고 시스템에 반영함으로써 개선될 수 있다. 따라서, 본 논문은 원형 시계열의 특성을 보다 잘 반영할 수 있는 그들의 차분데이터를 시스템에 적용하며, 생성 가능한 차분 데이터들 중 원형 시계열의 특징에 가까운 일부를 추출하여 다중모델 퍼지 예측 시스템을 구현함으로써 다양한 원형시계열의 패턴이나 법칙성 등이 고려될 수 있도록 하였다. 다중 모델 퍼지 시스템의 각각의 예측기에는 구조가 간단한 k-means 클러스터링 기법을 적용하여 구현의 용이성을 꽤하였으며, 성능평가를 통해 선택된 최종 예측기는 RCGKA(real-coded genetic k-means clustering algorithms)를 통해 더욱 최적화된 규칙기반을 가지게 함으로써 예측성능이 개선될 수 있도록 하였다. 본 논문에 사용된 최적화 기법인 RCGKA에는 또한 성능이 우수한 다양한 유전연산자를 도입하여 더욱 예측기 성능이 강화될 수 있도록 하였으며, 시뮬레이션을 통해 제안된 예측시스템의 효용성을 증명하였다.

  • PDF

A Study on Variance Change Point Detection for Time Series Data in Progress (진행중인 시계열데이터에서 분산 변화점 탐지에 관한 연구)

  • Choi Hyun-Seok;Kang Hoon-Kyu;Song Gyu-Moon;Kim Tae-Yoon
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.369-377
    • /
    • 2006
  • This paper considers moving variance ratio (MVR) for valiance detection problem with time series data in progress. For testing purpose, parametric method based on F distribution and nonparametric method based on empirical distribution are compared via simulation study.

마르코프 국면전환모형을 이용한 KOSPI와 금리의 추이 분석

  • 조재범;김호일
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.177-191
    • /
    • 1998
  • Hamilton(1989)은 시계열 변수가 2가지 이상의 국면을 가지고 있을 때, 현재 어떤 국면이 진행되고 있고 향후 진행될 국면이 무엇일까에 대해 추론이 가능한 시계열모형을 소개하였다. Hamilton모형은 시계열이 2개의 독립적인 관찰불가능한 변수의 합으로 구성되어 있고, 이중 한 변수는 2국면 마르코프 확률과정(2-State Markov Stochastic Process)을 따른다고 가정한다. Hamilton모형은 계수의 추정이 단순하면서도 비 대칭성과 조건부 이분산 등과 같은 복잡한 동학(Dynamics)을 용인한다는 장점이 있다(Lam, 1990). 본 연구에서는 마르코프 국면전환모형에 대해 설명한후, 사례분석으로 KOSPI와 금리의 추이에 따라 국면을 정의하여 각 국면의 특징과 타국면과의 연관성 등을 분석하였다.

  • PDF

A Study on the Nonlinear Relationship between CO2 Emissions and Economic Growth : Empirical Evidence with the STAR Model (비선형 STAR 모형을 이용한 이산화탄소 배출량과 경제성장 간의 관계 분석)

  • Kim, Seiwan;Lee, Kihoon
    • Environmental and Resource Economics Review
    • /
    • v.17 no.1
    • /
    • pp.3-22
    • /
    • 2008
  • We study nonlinearities of $CO_2$ emissions and economic growth m Korea using the Smooth Transition Autoregressive (or STAR) model. We find evidence for nonlinearities and cyclical regime changes of both time series. In the extended nonlinear empirical work, we characterize dynamic properties of the two time series and then find mutually significant Granger causality between $CO_2$ emissions and economic growth. All these empirical evidences together reinforce long standing concern that economy-wide restrictions on $CO_2$ emissions would hurt economic growth for Korean styled medium industrialized countries.

  • PDF

Modeling of Soil Moisture Time Series using Single Input Single Output Transfer Function (전이함수를 적용한 토양 수분 시계열 자료의 분석)

  • Choi, Kyung-Moon;Sun, Han-Na;Kim, Sang-Hyun;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1137-1141
    • /
    • 2008
  • 본 연구에서는 경기도 설마천 지역에 위치한 독립사면에서 토양수분을 연속측정한 결과를 분석하였다. 관측망의 설계를 통하여 선정한 위치에 탐침을 매설하고 공간적인 분포를 가진 시계열 형태의 데이터를 10cm 깊이에서 수집하였다. 전이함수 모형을 사면에서의 토양수분 전이과정에 대응하고, 이를 실제 측정한 데이터에 의해서 분석한 결과와 비교해 보았다. 전이 함수 모형은 강우 데이터를 입력변수로 하고 토양수분 시계열 데이터를 반응 변수로 하여 전개하였고, 시계열 모형의 전개는 크게 자료전처리, 모형구조의 규명, 모수추정, 모형진단 등의 과정을 통해서 적합한 모형을 도출하였다. 산지 사면에서의 토양수분을 전이함수에 의하여 전개한 모형은 토양수분의 깊이별 변화와 지형적 분포 양상에 따라 특색을 나타내었다. 또한 2003년 가을과 2004년 봄의 전이함수 모형 추정을 통하여 계절별 특성이 나타남을 알 수 있는데, 봄의 토양수분의 분포는 가을의 토양수분에 비하여 큰 변동성과 고차항의 반응양상을 보인다. 본 연구는 전이함수를 이용한 토양수분의 시계열 분석이 사면에서의 토양수분 변동특성을 지형적, 계절적 특성과 연계하여 이해하고 특성화하는 과정의 적절한 도구가 될 수 있음을 보여주고 있다.

  • PDF

Testion a Multivariate Process for Multiple Unit Roots (다변량 시계열 자료의 다중단위근 검정법)

  • Key Il Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 1994
  • An asymptotic property of the estimated eigenvalues for multivariate AR(p) process which consists of vector of nonstationary process and vector of stationary process is developed. All components of the nonstationary process are assumed to reveal random walk behavior. The asymptotic property is helpful in understanding multiple unit roots. In this paper we show the stationay part in multivariate AR(p) process does not affect the limiting distribution of estimated eigenvalues associated with the nonstationary process. A test statistic based on the ordinary least squares estimator for testing a certain number of multiple unit roots is suggested.

  • PDF

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고유한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미 있는 정보로 변환시켜 줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망과의 모형결합을 통해 기존연구와는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이블릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다.

  • PDF

Time Analysis of EEG by Essential Oils Stimuli. (향자극에 따른 뇌파의 시계열 분석)

  • 남경돈;민병찬;정순철;이동형;민병운;김유나;김철중;김준수
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.44-47
    • /
    • 2000
  • 본 연구에서는 향이 인간에 미치는 영향을 EEG의 시계열 분석을 통해 알아보았다. 피험자는 20대 초반의 후각자애가 없는 30명(남녀 각각 15명)을 대상으로 하여, 국제 기준 전극법을 사용하여 Fz과 Cz에서 뇌파를 기록하였다. 100%의 Rose oil Bulgarian, Lemon oil Mistitano, Jasmine abs, Lavender oil France, Peppermint oil을 실험 시약으로 사용하였다. 각 향 자극에 대하여 1분 동안의 측정을 10초 간격으로 구분하여 $\alpha/(\alpha+\beta)$ 비와 $\beta/(\alpha+\beta)$ 대역의 비를 비교 분석하였다. 30초까지는 안정과 향 자극간의 차이가 증대되는 성향을 보였으나 50초부터는 감소되는 경향을 보였다. 본 연구를 통해 향간의 차이가 자극제시 후 30초 일 때 가장 큰 것으로 나타났다고 이 시간을 기준으로 각 향의 선호도를 분석하였다.

  • PDF

Diagnosis of power supply using time-series of infrared camera (열화상 카메라의 시계열 데이터를 이용한 수·변전설비의 진단)

  • Hwang, Suk-Seung;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1443-1447
    • /
    • 2012
  • In this paper, the characteristic of temperature variation was reviewed according to pattern variation. In order to degrade of diagnosis of power supply by using time series data for temperature measured by infrared camera it was transformed into 2 dimension phase plane using Takens embedding method. As a simulation results we cannot completely confirm the characteristic behaviors of nonlinear dynamics in phase plane. However these results has a certain patterns, it requires verification method through additional research in the future.