• Title/Summary/Keyword: 비행 제어 시스템

Search Result 538, Processing Time 0.028 seconds

Sensor Redundancy Management using Kalman Filter for a Duplex Filght Control System (칼만필터를 이용한 2중 비행제어시스템의 센서 다중화 관리)

  • Lee, Seung-Hyun;Lee, Jang-Ho;Kim, Eung-Tae;Sung, Ki-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.9-15
    • /
    • 2010
  • This paper presents a duplex flight control system of design concepts and sensor fault detection algorithm using Kalman Filter. The algorithm was verified to use HILS that is composed of two FCCs, motion table, visualization system, cockpit, and flight model computer. The FCC was developed to be able to mount on small aircraft.

States and Modes Analysis for Flight Control of Smart UAV (스마트 무인기 비행제어 상태/모드 분석)

  • Oh, Soo Hun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.43-48
    • /
    • 2005
  • This paper describes the results of applying States and Modes Analysis, one of the requirements analysis techniques, to the development requirements of flight control software for Smart UAV. State/mode table enabled us to investigate various operation and design concepts, and as a result essential requirements for flight control software were established without omitting necessary requirements. Through the use of scenario-specific state transition diagrams, dynamic behaviours and control/response interfaces between each state and mode could been clearly identified, which made it possible to establish requirements related to dynamic behaviours of states and modes which are essential to the design of flight control software.

  • PDF

Analysis on Dynamic Characteristics and LQR Control of a Quadrotor Aircraft with Cyclic Pitch (사이클릭 피치제어가 가능한 쿼드로터 항공기의 운동특성 분석과 LQR 제어)

  • Jo, Sungbeom;Jang, Se-Ah;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • Typical quadrotor aircraft use four differential thrust vectors to control the motion. In this study, we design a quadrotor aircraft using collective and cyclic control to improve the shortcomings of existing quadrotor aircraft. The quadrotor aircraft with cyclic control can fly at various attitudes due to the excessive control degrees of freedom. Hence the quadrotor aircraft with cyclic control is suitable as high performance aircraft. In this study, modeling and stability analysis of the quadrotor aircraft have been performed using FLIGHTLAB. LQR control systems were designed using linear models at various flight conditions and verified through nonlinear simulations using MATLAB.

S/W Development of Flying Qualities Evaluation in Virtual Flight Test using MATLAB GUI (GUI 기반 가상모의시험 비행성 평가 S/W 개발)

  • Cho, Seung-Gyu;Rhee, Ihn-Seok;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • In an evaluation process of aircraft flying qualities, a clear and concise application interface is important since an evaluation process requires numerous repeated evaluation. This flight evaluation program have implemented efficient flight evaluation user interface along with changed trim condition interface and composed of comprehensive evaluation interface have mounted all automated FQ evaluation modules that was selected to be compose of 14 items in respect of an unmanned fixed-wing aircraft. Accordingly when it is necessary to design the flight control system as well as to develop a FQ considered aircraft, this S/W can be utilized as a tool that is a useful test evaluation S/W with scalability and enable to reduce the time and the cost of verification and evaluation process.

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스템의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Chanduk;Park Jong-Ha;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.219-224
    • /
    • 2005
  • In order to investigate transient behaviour of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. For transient simulation of the main engine system, the ICV(Inter-Component Volume) method was applied. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1Km, flight Mach number 0.1 and maximum engine rpm.

  • PDF

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF

FBW System and Operational Flight Program Development for Small Aircraft (소형항공기를 위한 FBW 시스템과 비행운영 프로그램 개발)

  • Lee, Seung-Hyun;Kim, Eung Tai;Seong, Kiejeong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To have the competitiveness in the future worldwide small aircraft market, we should be able to develop the aircraft which is highly safe, easy to fly, and having excellent flight characteristics. FBW(Fly-By Wire) system is essential for the enhancement of flight safety and control easiness. FBW system that has been applied only to the modern fighter and transport aircraft is recently applied to smaller aircraft such as regional aircraft, business aircraft and even small aircraft. The purpose of this research includes the development of flight control computer, the definition of FBW system component, the design concept of each component for redundant management, OFP(Operational Flight Program) development, FBW system integration and HILS(Hardware In-the Loop Simulation) verification environment to test this FBW system.

Application of neural network for airship take-off and landing mode by buoyancy control (기낭 부력 제어에 의한 비행선 이착륙의 인공신경망 적용)

  • Chang, Yong-Jin;Woo, Gui-Ae;Kim, Jong-Kwon;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.84-91
    • /
    • 2005
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn't give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed. The weight value of RBFN is acquired by learning which to reduce the error between desired input output through and airship dynamics to impress the disturbance. As a result of simulation, the controller using the RBFN is superior to PID controller which maximum error is 15M.

Implementation of Quad-rotor Hovering Systems with Tracking (추적이 가능한 쿼드로터 호버링 시스템 구현)

  • Jung, Won-Ho;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.574-579
    • /
    • 2016
  • Unlike general unmanned aerial vehicles, the quad-rotor is attracting the attention of many people because of simple structure and very useful value. However, as the interest in drones increases, the safety and location of vehicles are becoming more important provide against aviation safety accidents or lost accidents. Therefore, in this paper, we propose a tracking system that stabilizes the model with a simple controller by linearized modeling and grasp tilt angle data from various sensor through the filter. The developed tracking system transmits the position of the quad-rotor in flight to the computer and shows it through the route, so it can check the flight path and various information such as flight speed and altitude at the same time. Then the sensor used in the actual quad-rotor can not measure exact sensor data for disturbance and vibration. So we use sensor fusion of Kalman filter and Complementary filter to overcome this problem and the stability of the quad-rotor hovering is realized by PID control. Through simulation, various information such as the speed, position, and altitude of the quad-rotor were confirmed in real time.

Design and Implementation of Multi-Function Display Operational Flight Program and Middleware Using Real-Time and Embedded System Java Virtual Machine (실시간 임베디드 시스템용 자바 가상머신을 이용한 다기능 시현 비행운용 프로그램 및 미들웨어 설계 및 구현)

  • Won, Hyeon-Kwon;Jeong, Chai-Hun;Choi, Kyong-Sik;Kim, Jong-Pil;Kim, In-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1060-1068
    • /
    • 2011
  • In this paper, we present a development of an Operation Flight Program(OFP) on Real Time Operating System(RTOS) and Java Virtual Machine(JVM) of real-time and embedded system. The OFPs are consisted of Multi Function Display(MFD), Integrated Up Front Control(IUFC), Head Up Display(HUD) and Fire Control(FC) and loaded for localization Mission Computer(MC). This paper describes the structure and implementation of a MFD OFP and middleware based on Java.