• Title/Summary/Keyword: 비행 고도

Search Result 534, Processing Time 0.021 seconds

적응제어 기법을 이용한 항공기 비행제어

  • 김진호
    • ICROS
    • /
    • v.3 no.5
    • /
    • pp.51-57
    • /
    • 1997
  • 항공우주분야의 제어는 크게 항공기, 헬리콥터, 발사체, 미사일, 인공위성 등으로 비행체의 특성에 따라 크게 구분된다. 이러한 항공우주 시스템 설계시에는 다른 시스템 설계시와 동일하게 성능 요구조건을 설정한 후에 자동조정 장치를 설계하게 된다. 항공기의 경우에는 비행성과 조종성으롤 크게 구분하여 요구조건이 주어진다. 본 고에서는 항공기 비행제어에 적응제어가 어떻게 사용되었는가에 대하여 소개하였다.

  • PDF

Development of the External Instrumentation System of a Fighter Aircraft for Flight Test (비행시험을 위한 전투기 외장형 계측시스템 개발)

  • Yeom, Hyeong-Seop;Oh, Jong-Hoon;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.907-913
    • /
    • 2010
  • In this paper, we have described a development of the external instrumentation system of a fighter aircraft for flight test. The external instrumentation system consists of the instrumentation pod and the image pod. The instrumentation pod measures a flight data(attitude, velocity, altitude, etc) of the fighter aircraft by using GPS/AHRS sensor. The image pod takes high-speed images for the separation trajectory of a smart bomb with 2 high-speed cameras and video signal for it with one general camera. We have verified the performance of the external instrumentation system through the ground test, the environment test and the flight test.

Improvement of Abnormal Altitude Display of Radar Altimeter by Using Attenuation of Received Interference (수신 간섭의 신호 감쇠를 통한 전파고도계의 비정상 고도 시현 개선)

  • Kwon, Jung-Hyuk;Oh, Seung-Hyun;Seo, Byung-Il;Lee, Wang-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • The purpose of this paper was to study how to improve the occurrence of abnormal altitude values of radio altimeter, due to RF interference signals during the flight of aircraft. In flight missions, since it performs a roll-out after several high maneuvers, accurate altitude must be displayed to effectively perform flight missions. Thus, a root cause analysis and trouble shooting were performed for the display of abnormal altitude values of radar altimeters, and a method of reducing RF interference signals by installing an attenuator was examined. Additionally, the verification results for the improvements are also described.

Aerodynamic Characteristic of NACA XX08 Series at Low Reynolds Flow (NACA XX08시리즈의 저 레이놀즈수에서의 공력특성 연구)

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.636-641
    • /
    • 2015
  • 초소형 비행체는 길이 150mm, 무게 100g 이하의 비행체이다. 초소형 비행체는 그 특성상 저 레이놀즈수에서 비행하며 저 레이놀즈수에서의 공기역학적 특성은 고 레이놀즈수에서의 공기역학적 특성과 큰 차이가 있다. 이는 초소형 비행체 개발 위해 저 레이놀즈수에서의 공력특성 연구가 필요함을 의미한다. 이에 따라 본 연구에서 NACA 4digit Airfoil의 캠버크기와 캠버위치의 변화에 따른 공기역학적 특성의 변화를 확인하였다. 캠버의 위치가 앞전 또는 뒷전으로 이동함에 따라 양력계수가 상승하는 것을 확인하였으며 캠버가 뒷전으로 이동함에 따라 실속이 지연되는 것을 확인하였다. 약 4도 이하의 받음각에서 익형의 아랫변에 발생하는 박리는 고 레이놀즈수에서의 실험에서 확인되어지는 공력특성과 큰 차이를 발생시켰다. 양항비 특성이 가장 우수한 익형은 NACA5808 인 것으로 확인되었다.

  • PDF

Acquisition of Subcentimeter GSD Images Using UAV and Analysis of Visual Resolution (UAV를 이용한 Subcentimeter GSD 영상의 취득 및 시각적 해상도 분석)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.563-572
    • /
    • 2017
  • The purpose of the study is to investigate the effect of flight height, flight speed, exposure time of camera shutter and autofocusing on the visual resolution of the image in order to obtain ultra-high resolution images with a GSD less than 1cm. It is also aimed to evaluate the ease of recognition of various types of aerial targets. For this purpose, we measured the visual resolution using a 7952*5304 pixel 35mm CMOS sensor and a 55mm prime lens at 20m intervals from 20m to 120m above ground. As a result, with automatic focusing, the visual resolution is measured 1.1~1.6 times as the theoretical GSD, and without automatic focusing, 1.5~3.5 times. Next, the camera was shot at 80m above ground at a constant flight speed of 5m/s, while reducing the exposure time by 1/2 from 1/60sec to 1/2000sec. Assuming that blur is allowed within 1 pixel, the visual resolution is 1.3~1.5 times larger than the theoretical GSD when the exposure time is kept within the longest exposure time, and 1.4~3.0 times larger when it is not kept. If the aerial targets are printed on A4 paper and they are shot within 80m above ground, the encoded targets can be recognized automatically by commercial software, and various types of general targets and coded ones can be manually recognized with ease.

Altitude Effects on the Performance of the Solid Fuel Ramjet (고체램제트 추진기관 성능에 미치는 고도의 영향)

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.272-275
    • /
    • 2007
  • The combustion efficiency of the solid fuel ramjet is affected by the inlet air temperature. And this inlet air temperature is dependent on the flight Mach number and the environment air temperature. If the flight altitude is changeable, the inlet air temperature and also the air density vary. The performance efficiency is investigated with this variables related to the combustion efficiency.

  • PDF

Accuracy Analysis of Cadastral Control Point and Parcel Boundary Point by Flight Altitude Using UAV (UAV를 활용한 비행고도별 지적기준점 및 필지경계점 정확도 분석)

  • Kim, Jung Hoon;Kim, Jun Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.223-233
    • /
    • 2018
  • In this study was classified the cadastral control points and parcel boundary points into 40m, 100m by flight altitude of UAV (Unmanned Aerial Vehicle) which compared the coordinates extracted from the orthophoto with the parcel boundary point coordinates by GNSS (Global Navigation Satellite System) ground survey. As a results of this study, first, in the spatial resolution analysis that the average error of the orthoimage by flight altitude were 0.024m at 40m, and 0.034m at 100m which were higher 40m than 100m for spatial resolution of orthophotos and position accuracy. Second, in order to analyze the accuracy of image recognition by airmark of flight altitude that was divided into three cases of nothing, green, and red of RMSE (Root Mean Square Error) were X=0.039m, Y=0.019m and Z=0.055m, the highest accuracy. Third, the result of the comparison between orthophotos and field survey results that showed the total RMSE error of the cadastral control points were X=0.029m, Y=0.028m, H=0.051m, and the parcel boundary points were X=0.041m, Y=0.030m. In conclusion, based on the results of this study, it is expected that if the average error of flight altitude is limited to less than 0.05m in the legal regulations related to orthophotos for cadastral surveying, it will be an economical and efficient method for cadastral survey as well as spatial information acquisition.

Single Engine Failure during Approach and Transition Analyses of VTOL Aircraft (수직이착륙기의 착륙접근시 단일엔진고장 및 비행전이 영역 해석)

  • Yoon, Sang-Joon;Ahn, Byung-Ho;Choi, Dong-Hoon;Mavris, Dimitri
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.50-56
    • /
    • 2005
  • The objective of this study is to find the optimal thrust condition and wing loading of a vertical take-off and landing (VTOL) fixed-wing aircraft through a single engine failure analysis during landing approach and an analysis of transition flight. The aircraft analysis modules used in the study are based on the aircraft synthesis program. To achieve the computing infrastructure for aircraft design and analysis, the EMDIOS was employed as a design framework, which is a semi-completed application program and ready to customize. Simulation results reveal the most critical height at the event of single engine failure is approximately 40 ft. And, in order to avoid a significant loss in altitude during the transition, the thrust to weight ratio must be kept high, while both the engine tilt speed and the wing loading must be kept low, as confirmed by the analysis results.

A Study on the Improvement of Stability of Dual FCC (이중 비행제어시스템의 안정성 향상에 관한 연구)

  • Om, Songryong;Cho, Youngseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.381-382
    • /
    • 2019
  • 본논문에서는 산업용 드론개발을 위한 안정성 향상에 대하여 연구하였다. 기존의 비행체의 경우 고신뢰도 대용량의 제어시스템을 이용하여 비행제어시스템을 구성하지만 무인 비행체는 소형 내장형시스템을 이용한다. 본 연구에서는 소형 무인 비행체에서 사용하는 소형 내장형 비행제어시스템에서 안정성을 개선하기 위한 방법으로 비행제어신호와 모터의 제어신호를 측정하여 안정상태와 이상상태를 구별한다. 제안한 방법은 기존의 비행제어시스템을 수정하지 않고 비행제어시스템의 감시가 가능 할 것으로 예상한다.

  • PDF

Study on UAV Flight Patterns and Simulation Modelling for UTM (저고도 무인기 교통관리 체계에서 무인기 비행패턴 분류 및 시뮬레이션 모형 개발)

  • Jung, Kyu-sur;Kim, Se-Yeon;Lee, Keum-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • In this paper, we classified a flight pattern of unmanned aerial vehicle(UAV) which will be operating in UTM system and analyzed its flight pattern by purpose of use. Flight patterns of UAV are sorted into three patterns which are circling, monitoring and delivery. We considered four cases of industry areas using UAV which are agriculture, infrastructure monitoring, public safety & security(p.s.s) and delivery. It is necessary to build a simulation model as a verification tool for applying the flight pattern according to the use of UAV to the real UTM system. Therefore, we propose the simulation model of UAV with updating states over time. We applied simulation to UAV monitoring flight pattern, and confirmed that the flight was done by the given input data. The simulation model will be used in the future to verify that the UAV has various flight patterns and can operate safely and efficiently for the intended use.