• Title/Summary/Keyword: 비행환경 모사시험

Search Result 31, Processing Time 0.024 seconds

Flight Environment Simulation Test for Reliability Improvement of Precise Guided Missile (유도무기의 신뢰성 향상을 위한 비행환경 모사시험 방안 연구)

  • Choi, Seung Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.781-787
    • /
    • 2016
  • We introduce FEST (Flight Environment Simulation Test) procedures for precise guided missiles to reliably improve systems. Flight vibration specification was established based on power spectral density curves calculated from flight test data of a high speed precise guided missile. A FEST pre-profile was developed according to flight vibration specification and delivered to a precise guided missile assembly. Vibration responses were measured by installing accelerometers on electronic components vulnerable to dynamic forces. The FEST profile was adjusted by comparing the vibration responses and the flight vibration specification. Subsequently, the FEST profile was repeatedly modified through trial and error, because the responses were similar to the flight environment. The modified FEST profile enabled performance testing of assembled precise guided missiles under simulated flight conditions on the ground, where unexpected errors could be corrected before the flight tests, leading to cost and risk reduction in the development of the precise guided missile system.

Instrument Flight Certification Process and Flight Test Results of Korean Utility Helicopter (한국형 기동헬기 계기비행 인증절차 및 비행시험 결과)

  • Kwon, Hyuk-Jun;Park, Jong-Hoo;Park, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In this paper, the instrument flight certification process and flight test results of Korean Utility Helicopter (KUH) are presented. For the instrument flight certification, the suitability of installed equipments and instruments have been reviewed and verified by ground and flight tests. Next, static and dynamic stability test are conducted in accordance with FAR-29 Appendix B. The static stability is determined by the change of speed and attitude according to control inputs. The dynamic stability is evaluated by how quickly the response of the helicopter due to long and short period control inputs are decreased. The pilot workload evaluation are also carried out by simulated IMC flight tests. This paper presents the workload assessment results when some failures are occurred at cockpit instruments, engine or flight control systems as well as the normal situation. After the simulated IMC flight test is completed, actual instrument flight test are conducted in a real IMC environment according to the air traffic controls.

Design and Cold Test of Semi-Freejet High Altitude Environment Simulation Test Facility for High-Speed Vehicle (초고속 비행체를 위한 준 자유흐름식 고공환경 모사시험설비의 설계 및 상온실험)

  • Lee, Seongmin;Yu, Isang;Park, Jinsu;Ko, Youngsung;Kim, Sunjin;Lee, Jungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2018
  • In this study, a cold flow test was carried out on a high-speed vehicle facility with a high-altitude environment simulator. Variable test was carried out according to the blockage ratio, angle, and length of the test model. It is confirmed that the blockage rate can be operated in the range of 40%, and that the model should be selected at an angle of 45 degrees or less. The variables of length are less dominant compared to the variables of blockage rate and angle. Through this, a database is obtained according to the parameters of the conical model of the high-speed vehicle test facility.

Environmental Tests of Kick Motor Safety and Arming Device (킥모터 점화안전장치 환경시험)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.703-704
    • /
    • 2010
  • The environmental tests simulating the flight condition have been performed to manufacture the high reliable safety and arming device(SAD). A motor assay in preliminary design was reinforced with the structure to resist severe vibration and shock environment, and the design change had been verified by conducting the principal environmental test again.

  • PDF

Cold Test and Internal Flow Analysis of Semi-Freejet Type High Altitude Environment Simulation Test Facility for the High-Speed Vehicle (초고속 비행체를 위한 준 자유흐름식 고공환경 모사시험설비의 상온시험 및 내부유동 해석)

  • Lee, Seongmin;Yu, Isang;Choi, Jiseon;Oh, Junghwa;Shin, Minkyu;Ko, Youngsung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.290-296
    • /
    • 2018
  • In this study, the cold test and the numerical analysis were carried out according to the shape parameters of the test model in order to confirm the operation range of high altitude environment simulation test facility for the supersonic vehicle. The blockage ratio, angle and length ratio were considered as the design parameters. The blockage rate is expected to be limited in the region of more than 40% due to the normal shock and expansion fan. It was confirmed that the angle of model should be selected at the size of 45 degrees or less due to the influence of the strong shock wave. There was no difference in performance between the lengths of 8 times the model diameter. Finally, we obtained the performance database according to the shape parameters of the conical test model and confirmed the operable range of the semi-freejet type high altitude environment simulation test facility.

High Speed Propulsion System Test Research Using a Shock Tunnel (충격파 터널을 이용한 고속추진기관 시험 연구)

  • Park, Gisu;Byun, Jongryul;Choi, Hojin;Jin, Yuin;Park, Chul;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.43-53
    • /
    • 2014
  • Shock tunnels are known to be capable of simulating flow-field environments of supersonic and hypersonic flights. They have been operated successfully world-wide for almost half a century. As a consequence of the strong interest in hypersonic vehicles in Korea, attention has been given on this type of facility and so an intermediate-sized shock tunnel has lately been built at KAIST. In the light of this, this paper presents our tunnel performance and some of the model scramjet test data. The freestream flow used in this work replicates a supersonic combustor environment for a Mach 5.7 flight speed.

Thruster Control Unit 하우징, PCB의 정적 및 진동 해석

  • Kim, Ji-Hun;Jung, Ho-Lak;Jeon, Sang-Woon;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.124-132
    • /
    • 2004
  • This paper deals with the static and dynamic analysis of the housing and PCB of TCU(Thruster Control Unit) for KSLV-I(Korea Space Launch Vehicle-I). TCU should pass the environment test simulating the flight environment of KSLV-I. The most important tests are the vibration and the shock tests. In this research, we proposed a design standard about the vibration and the shock environment and then verified TCU housing and PCB design met the standard. Based on the analytical results, the TCU housing was redesigned to meet the design standard. The new design is supposed to pass the environment test.

  • PDF

Development of a Comprehensive Performance Test Facility for Small Millimeter-wave Tracking Radar (소형 추적 레이다용 종합성능시험 시설 개발)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The small tracking radar targets the target in a real-time, fast-moving, fast-moving target against aircraft with a large RCS that is maneuvering at low speed and a small RCS aircraft maneuvering at high speed (fighters, drones, helicopters, etc.) It is a pulsed radar that detects and tracks. Performing a performance test on a tracking radar in a real environment is expensive, and it is difficult to quantitatively measure performance in a real environment. Describes the composition of the laboratory environment's comprehensive performance test facility and the main requirements and implementation of each configuration.Anechoic chambers to simulate the room environment, simulation target generator to simulate the signal of the room target, target It is composed of a horn antenna driving device to simulate the movement of a vehicle and a Flight Motion Simulatior (FMS) to simulate the flight environment of a tracking radar, and each design and implementation has been described.

Altitude Engine Test (고공 환경 엔진 시험)

  • Lee Jin-Kun;Kim Chun-Taek;Yang Soo-Seok;Lee Dae-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.104-111
    • /
    • 2005
  • Gas turbine engines for aircraft are usually operated at the altitude condition which is quite different from the ground condition. In order to measure the precise performance data at the altitude condition, the engine should be tested at the altitude condition by a real flight test or an altitude simulation test with an altitude test facility. In this paper, the present state of the altitude test facility and the test technologies at urn(Korea Aerospace Research Institute) will be introduced.

Tensile Characteristics of A12024-T3 under Rapid Heating (급속가열환경에서 A12024-T3의 인장특성)

  • Kim, Jong-Hwan;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.101-108
    • /
    • 2004
  • The thermomechanical tensile characteristics were evaluated for A12024-T3 under heating rates from $1^{\circ}C/sec\;to\;30^{\circ}C/sec$ by using an infrared heating equipment to simulate aerodynamic heating. The rapid heating test results were compared with tensile test results after 1/2 hour exposure in terms of yield stress to investigate the influence of heating condition. A heating rate-yield temperature parameter was suggested for rapid heating based on time-temperature parameters, and master yield stress curve was obtained by using these parameter. These test results can be used for margin of safety of supersonic vehicle structures subjected to aerodynamic heating.