• Title/Summary/Keyword: 비행시험 프로그램

Search Result 87, Processing Time 0.03 seconds

Synthetic Overview on the Dispute about Tiltrotor Technology and Flight Safety (틸트로터 비행체 개념에 대한 기술적 논란 및 비행안전성 논란 분석)

  • Ahn, Oh-Sung;Kim, Jai-Moo
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.254-262
    • /
    • 2008
  • Several decades have passed since tiltrotor technology became a hot issue of debates between aircraft majors, policy maker and mass-media. Although most of those subjects have been officially probed or answered in objective way, biased articles or argues related with the adequacy of this technology still prevail in the way of tilt-rotor development programs, which are totally irrelevant and out-dated. This paper aims to help understanding on those issues in technically balanced manner and the cases of flight test mishaps.

  • PDF

Development of a Air-to-Air Missile Simulation Program for the Lethality Evaluation (치사율 평가를 위한 공대공 미사일 모의 발사 프로그램 개발)

  • Sung, Jae-Min;Kim, Byoung-Soo;Shin, Bo-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.288-293
    • /
    • 2010
  • This paper presents to calculate the lethality of missile for the simulation test program and to verify the simulation results. In order to calculate a reliable lethality we need may data and experiments of fuse and warhead, but in reality it is hard to perform a task. Therefore, this paper obtained from the reference paper to analyze the lethality data for the calculation of the lethality. We form the 6 DOF simulation model using the MATLAB/SIMULINK. And formed the autopilot algorithm using the vertical and horizontal acceleration feedback and PNG (Proportional Navigation Guidance) command be used to the guidance algorithm. Finally, we evaluate the results about three cases, front launch, side launch and rear launch to simulate the simulation program, and the target is designed to have a constant speed and direction.

A Study on Autonomous Control for LEO Satellites using OBCP(On-Board Control Procedures) (OBCP(On-Board Control Procedures)를 이용한 저궤도 관측위성의 자율적 제어기능에 대한 연구)

  • Lee, Jae-Seung;Yang, Seung-Eun;Choi, Jong-Wook;Cheon, Yee-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.921-924
    • /
    • 2010
  • 정지궤도 위성을 제외한 대부분의 저궤도 위성 및 심우주 관측용 위성은 임무를 수행하면서 하루동안에도 제한된 시간동안만 지상국과의 통신이 가능하다. 따라서 위성 운영에 고수준의 자율적 제어기능이 요구된다. OBCP(On-Board Control Procedures)는 별도로 개발된 언어로 작성한 작은 용량의 스크립트 프로그램을 통해 위성을 제어하는 기능을 제공한다. 이러한 방법을 통해 지상관제 시에 위성의 임무수행동안 수행되어야 하는 다양하고 복잡한 운영 시퀀스를 용이하게 준비하고 업로드할 수 있다. OBCP는 위성비행소프트웨어와는 분리된 별도의 서브시스템으로 수행되기 때문에 새로운 위성운영 프로시져의 생성을 위해 위성비행소프트웨어의 수정, 재검증, 코드업로드 등의 절차가 요구되지 않으며 지상에서 개발 및 검증시험을 완벽하게 수행할 수 있다. 본 논문에서는 기존의 저궤도 관측위성에서 사용되었던 위성의 자율적 제어 시퀀스 기능과 OBCP의 기능을 비교하여 설명하고, 실제 Herschel and Plank 위성에 활용된 예를 통해 OBCP의 개념 및 설계 방안에 대하여 소개한다.

Propeller Performance Analysis for Human Powered Aircraft (인간동력 항공기용 프로펠러 성능해석)

  • Park, Poo-Min
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.193-201
    • /
    • 2013
  • Propeller is an important component of Human Powered Aircraft (HPA) propulsion system. HPA uses large diameter low rotational speed propeller to get high propeller efficiency. The propeller was designed by HPA propeller designing program. The propeller pitch is adjustable by rotating the blade axis angle at ground. Performance of the propeller for various parameters are analysed by the same program used for design. Off-design condition performance was also checked including pilot power change and flight speed change. The propeller was manufactured in ultra-light structure using carbon composite material down to 950g. The propeller was ground tested on ironbird and installed on KARI HPA. Finally the HPA flew 291m with this propeller.

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft (회전익항공기용 연료셀 피탄 수치모사)

  • Kim, Hyun-Gi;Kim, Sung-Chan;Kim, Hwak-Bum;Choi, Yong-Hoon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.649-652
    • /
    • 2012
  • 회전익항공기의 연료셀 내부는 연료보관 및 연료를 엔진으로 공급하기 위한 배관과 구성품들이 배치되어 있다. 특히, 기동헬기는 전장에서 사용되는 헬기로써, 수 km 고도에서 비행하는 고정익기보다 비행고도가 낮기 때문에 피탄될 가능성이 높다. 따라서, 항공기의 생존성을 극대화하기 위해서는 피탄시 유체내부 상승압력에 의한 내부 LRU 가 받는 영향성을 검토하여 설계되어야 함은 주지의 사실이다. 그러나, 내탄시험은 연료셀 자체의 제작비용 및 준비기간이 상당히 소요되고, 실탄사용에 따른 시험수행의 제약 때문에 수치모사를 통한 관련 데이터의 확보가 필요하다. 이를 위해 본 연구에서는 유체-구조 수치모사 프로그램인 Autodyn을 이용하여 회전익항공기 연료셀의 내탄 수치모사를 수행하여, 피탄 후 연료셀 내부에서의 탄 거동을 분석하고 유체내부의 압력과 연료 셀 자체의 등가응력을 평가하였다.

  • PDF

A UAV Flight Control Algorithm for Improving Flight Safety (무인항공기 비행제어컴퓨터 알고리즘 개발을 통한 비행안전성 향상)

  • Park, Suncheol;Jung, Sungrok;Chung, Myungjin
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.559-565
    • /
    • 2017
  • A UAV(unmanned aerial vehicle) requires higher reliability for external effects such as electromagnetic interference because a UAV is operated by pre-designed programs that are not under human control. The design of a small UAV with a complete resistance against the external effects, however, is difficult because of its weight and size limitation. In this circumstance, a conventional small UAV dropped to the ground when an external effect caused the rebooting of the flight-control computer(FCC); therefore, this paper presents a novel algorithm for the improvement of the flight safety of a small UAV. The proposed algorithm consists of three steps. The first step comprises the calibration of the navigation equipment and validation of the calibrated data. The second step is the storage of the calibration data from the UAV take-off. The third step is the restoration of the calibration data when the UAV is in flight and FCC has been rebooted. The experiment results show that the flight-control system can be safely operated upon the rebooting of the FCC.

A Development of the Program for Flight Suitability Distinction and Calculation of Available Sorties (비행 적합성 판별 및 소티수 산출 프로그램 개발)

  • Kim, Young-Rae;Lee, Sang-Chul;Lee, Jin-Sub;Ryu, Kwang-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.105-110
    • /
    • 2011
  • The flight test comes at the end of the aircraft development process and is an unique part. The purposes of the flight test are to evaluate the characteristics of the aircraft and validate its design in the real operating environment. Atmospheric considerations are key elements, when the planner of flight test establishes the flight test planning. The primary objective of atmospheric considerations is to ensure safety of the vehicle. The planning through atmospheric considerations can minimize flight cancellations caused by severe weather. In this paper, we present a program for flight suitability distinction, and develop a program for calculation of available sorties.

Development of Operational Flight Program for Avionic System Computer (항공전자시스템컴퓨터 탑재소프트웨어 개발)

  • Kim, Young-Il;Kim, Sang-Hwan;Lim, Heung-Sik;Lee, Sung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.104-112
    • /
    • 2005
  • This paper presents the technique to develop an operational flight program(OFP) of avionic system computer(ASC) which integrates the avionics control, navigation and fire control and provides informations for flight, navigation and weapon aiming missions. For the development of the OFP of ASC, two i960KB chips are used as central processing units board and standard computer interface library(SCIL) which is built in house is used. The Irvine compiler corporation(ICC) integrated development environment(IDE) and the programming language Ada95 are used for the OFP development. We designed the OFP to a computer software configuration item(CSCI) which consists of to three parts for independency of software modules. The OFP has been verified through a series of flight tests. The relevant tests also have been rigorously conducted on the OFP such as software integrated test, and ground functional test.

Effective Perceived Noise Level Prediction for a Propeller driven UAV by using Wind Tunnel Test Data (풍동실험결과를 이용한 프로펠러 무인 항공기의 환경인증소음 예측에 관한 연구)

  • Ryi, Jae-Ha;Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • This paper discussed a procedure for noise certification of Aircraft and predicting the full scale over-flight noise of propeller from acoustic wind tunnel measurement of small scale propeller. Noise Certification Procedures is established from International Civil Aviation Organization(ICAO). The data manipulations are then discussed in extrapolation to simulation flight distance and flight simulation. One of the most important point of flight simulation is adjustments for differences between wind tunnel test conditions and flight test conditions. To simulated the noise level estimation procedure for noise data post-process, simulate procedures from data of the wind tunnel noise measurement and the flight noise measurement by using a 7kg degree UAV. This study confirmed an effectively noise estimation procedures by wind tunnel noise test and flight noise test.

Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV (실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출)

  • Lee, Hwan;Kim, Eung-Tae;Choi, Hyoung-Sik;Choi, Ji-Young;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.999-1005
    • /
    • 2007
  • In case of an abnormal condition of control surface, the real-time estimation of aerodynamic derivatives are required for the reconfigurable control system to be flight for missions or return to the head office. The goal of this paper is to represent a technique of fault detection to the control surface as a base research to the fault tolerant control system for safety improvement of UAV. The real-time system identification for the fault detection to the control surface was applied with the recursive Fourier Transform and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than about 50% in the normal condition.