• Title/Summary/Keyword: 비파괴 진단 기술

Search Result 104, Processing Time 0.025 seconds

Detection of Micro-Crack Using a Nonlinear Ultrasonic Resonance Parameters (비선형 초음파공명 특성을 이용한 미세균열 탐지)

  • Cheong, Yong-Moo;Lee, Deok-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2012
  • In order to overcome the detection limit by the current nondestructive evaluation technology, a nonlinear resonant ultrasound spectroscopy(NRUS) technique was applied for detection of micro-scale cracks in a material. A down-shift of the resonance frequency and a variation of normalized amplitude of the resonance pattern were suggested as the nonlinear parameter for detection of micro-scale cracks in a materials. A natural-like crack were produced in a standard compact tension(CT) specimen by a low cycle fatigue test and the resonance patterns were acquired in each fatigue step. As the exciting voltage increases, a down-shift of resonance frequency were increases as well as the normalized amplitude decrease. This nonlinear effects were significant and even greater in the cracked specimen, but not observed in a intact specimen.

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

Safety Analysis for Petrochemical Plant by Nondestructive Test (비파괴검사에 의한 석유화학설비의 안전진단)

  • 이주석
    • Journal of the KSME
    • /
    • v.34 no.11
    • /
    • pp.859-866
    • /
    • 1994
  • 석유화학플랜트에서 운용되는 반응로, 저장탱크, 열교환기 등의 압력용기 그리고 배관 등의 시 설물은 장기간 사용함에 따라 고온, 고압, 부식성 분위기, 열응력, 피로 등 여러 가지 요인으로 경년열화되어 노후화 된다. 일반적으로 이들 설비들에서 작용하는 유체나 가스의 누출은 화재나 폭발과 같은 재해 뿐만아니라 주위 환경을 오염시켜 공해를 유발하게 되며, 이들 시설물에 대한 신뢰성 및 안전성 확보는 국가기간 산업에서 매우 중요하며 이와 관련된 장치의 설계, 시공 뿐만 아니라 시험검사 및 평가기술 측면에서도 중요시되고 있다. 플랜트 시설물에 대한 가동중 주기적인 안전진단은 현상의 파악 뿐만 아니라 인명과 재산의 손실을 미연에 예방하고 경제적 이고 효율적인 운영계획 수립에 필수적인 것이다. 이 글에서는 국내 석유화학플랜트의 검사현 황을 알아보고 앞으로 플랜트의 효율적 운영 및 안전 운전을 위한 가동중검사 기술 및 개선대 책에 대하여 기술하고자 한다.

  • PDF

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.

Development and Simulation of a Detecting Method using Reflectometry of Electrical Signal (전기적 신호의 반사파 측정법을 적용한 부식 진단 기술의 개발 및 시뮬레이션)

  • Yoon, Seung Hyun;Bang, Su Sik;Shin, Yong-June;Lim, Yun Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.367-372
    • /
    • 2018
  • Defects in aging infrastructures such as pre-stressed concrete bridges and cable bridges can cause a collapse of the entire structure. Defects, however, are often located inside of the structures that they are not visible from the outside. For example, in PSC bridges, because reinforcement steels are encased by exterior covers, corrosion and void on the reinforcement steel cannot be detected with a visual inspection. Therefore, in this paper, a new non-destructive evaluation(NDE) method that can detect defects inside of structures is presented. The new method utilizes sending of electrical signals, a method often utilized in electrical engineering to detect any discontinuities on power cables. In order to confirm the applicability and accuracy of the method, some experiments were conducted in the laboratory. And to overcome the hardship of conducting experiments on real structures due to their enormous size, simualtions were conudcted using a commercial program, COMSOL. The results of the experiments were analyzed and compared to confirm the accuracy of the simualtions.

STS Defect Structure Diagonis through the Infrared Thermography Mechanism and Flex-PDE Thermal Analysis (적외선 열화상 메카니즘과 Flex-PDE 열해석을 통한 STS 결함구조물 진단)

  • Park, Young Hoon;Yang, Sung Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.20-29
    • /
    • 2014
  • This research aims to study the new paradigm of NDE measurement which allows the identification of defect locations and sizes of a certain structure by measuring its surface temperature after applying heat. STS which has a certain defect is applied by the heat of 70000W by a heater. Its difference of STS surface temperature is measured by using Infrared thermography. The estimated result of STS experiment and that of theoretical analysis of Flex-PDE are compared and analyzed to diagnose STS defect. Moreover, this study can save time and money and improve accuracy in contrast to the existing ultrasonic NDE experiment. In addition, the new paradigm of NDT/NDE by reverse-engineering will be valid if the data of thermal analysis and temperature distribution from the specifications of many materials is accumulated and verified.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

ISI NDE Total Support System for Korean Nuclear Power Plants (원전 가동중검사 종합지원체계)

  • Jeong, Yi-Hwan Peter
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 1998
  • Structural integrity of nuclear components is important for a safe operation of nuclear power plants. Therefore, nuclear power plants require to perform reliable, periodic inservice inspections. Korea Electric Power Company(KEPCO) operates the entire Korean nuclear power plants. Since nuclear power plant safety and the associated inservice inspection(ISI) are under the plant owner's responsibility, Korea Electric Power Research Institute(KEPRI), the R&D division of KEPCO, has established the ISI NDE Total Support system(TSS) for an efficient performance of ISI tasks, and initiated both key ISI NDE technology development program and traing & qualification system development program for an independent ISI operation. This paper describes details of these programs.

  • PDF

A Non-Invasive Ultrasonic Urinary Bladder Internal Pressure Monitoring Technique: Its Theoretical Foundation and Feasibility Test (비침습적 초음파 방광 내압 측정 기술: 이론적 기초 및 실현 가능성 평가)

  • Choi, Min Joo;Kang, Gwan Suk;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.526-539
    • /
    • 2012
  • A new approach was proposed in this article, named, a non-invasive ultrasonic method to monitor the urinary bladder internal pressure which can resolve the shortcomings of the existing methods. The proposed method makes use of acoustic cavitation. It is based on a physical phenomenon that an extracorporeal high intensity focused ultrasonic pulse generates bubbles inside the urinary bladder and the dynamic properties of the bubbles are related to the urinary bladder internal pressure. The article presents the theoretical foundation for the proposed technique and verifies its feasibility with preliminary experimental data. The suggested ultrasonic urinary bladder internal pressure monitoring method is non-invasive and can be used any time regardless of sex and age, so that it will be of a great benefit to the diagnosis and therapy of urination related diseases.

Conditioning diagnosis & on-line monitoring technology on the traction motor for railway rolling stock (철도차량 견인전동기의 상태진단 및 상시감시 기술)

  • Wang, Jong-Bae;Hong, Seon-Ho;Kim, Sang-Am;Kwak, Sang-Rok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.92-95
    • /
    • 2003
  • 본 논문에서는 철도차량 견인전동기에 대한 상태진단 및 상시감시 기술에 관하여 소개하였다. 권선의 절연상태 진단을 위한 비파괴 시험법에서는 부분방전량 Q에 대한 평균열화도 $\Delta$로 표현되는 D-Map에 의해 잔여 절연내력(residual dielectric strength)을 예측하고, 기기의 운전이력측면에서 기동-정지 횟수와 열적, 전기적 및 열싸이클 스트레스 등에 의해 각 열화 인자를 고려한 운전시간에 기반한 N-Y 수명예측을 수행한다. 그리고 견인전동기의 전류에 대한 온라인 상태감시를 통해 베어링 고장, 고정자 및 전기자 고장, 고장 또는 전동기축 손상에 기인하는 비정상 운전상태 의 감지를 수행한다.

  • PDF