• Title/Summary/Keyword: 비파괴검사학회

Search Result 1,886, Processing Time 0.026 seconds

A FEM Analysis of Remote Field Eddy Current Distribution Characteristics to CANDU Fuel Channel Tube(I) (CANDU형 핵연료 채널 압력관에 대한 원거리장 와전류의 자제분포 특성해석(I))

  • Huh, Hyung;Chung, Hyun-Kyu;Kim, Kern-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • A FEM model of the remote-field eddy current effect is presented for zirconium-2.5 percent niobium(Zr-2.5%Nb) nuclear reactor pressure tubes to demonstrate the important electromagnetic field phenomena. This model is applied to evaluate the optimal operating frequency and detector position. There are many ambiguous experimental results connected with this technique. Finite element calculations can be used in the interpretation of these experimental results even though the electromagnetic fields measured in the remote-field technique are very small.

Evaluation of Toughness Degradation of 1Cr-1Mo-0.25V Steel by Electrical Resistivity (전기비저항을 이용한 1Cr-1Mo-0.25V강의 인성열화도 평가)

  • Nahm, S.H.;Yu, K.M.;Kim, A.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.10-16
    • /
    • 1998
  • Remaining life of turbine rotors with a crack can be assessed by the fracture toughness of the aged rotors at service temperature. DC potential drop measurement system was constructed in order to evaluate material toughness nondestructively. Test material was 1Cr-1Mo-0.25V steel used widely for turbine rotor material. Seven kinds of specimen with different degradation levels were prepared according to isothermal aging heat treatment at $630^{\circ}C$. Electrical resistivity of test material was measured at room temperature. It was observed that material toughness and electrical resistivity decreased with the increase of degradation. The relationship between fracture toughness and electrical resistivity was investigated. Fracture toughness of a test material may be determined nondestructively by electrical resistivity.

  • PDF

Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Eddy Current Method (비파괴적 방법에 의한 입자 강화 복합재료의 부피분율 평가: 와전류법)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.112-120
    • /
    • 1998
  • A nondestructive evaluation technique was developed for the quantitative determination of the reinforcement volume fractions in particulate reinforced metal matrix composites. The proposed technique employed a composite micromechanics which accounts for the microstructure of the composite medium together with the measurement of anisotropic electrical conductivity. When the measured conductivity was coupled with the theoretically predicted conductivity, the unknown reinforcement volume fraction was calculated. An analytical model based on the Mori-Tanaka method was described which relates the NDE signatures to the composite microstructure. The volume fractions were calculated using eddy current measurements made on a wide range of silicon carbide particulate ($SiC_p$) reinforced aluminum (Al) matrix composites. The calculated $SiC_p$ volume fractions were in good agreement with the measured volume fractions in the range of 0-30%. The technique was also found to be effective in estimating the total volume percentage of reinforcement and intermetallic compound formed during the processing stage.

  • PDF

The Characteristics of Ultrasonic Signals for Detecting Micro-Defects in Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 내부 미소결함에 따른 초음파 신호 특성 연구)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Kubota, M.;Murakami, Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.591-597
    • /
    • 2001
  • Ti alloy is used for essential parts of aircraft for high temperature environment. Although Ti alloy has excellent performance in regard to mechanical properties, it is difficult ot find fatigue cracks by nondestructive ultrasonic inspection due to its two-phase microstructure, which consists of hard alpha and beta phases. Sound energy reflected from microstructural features in the component produces a background inspection noise which is seen even when no defects are present. This noise can inhibit the detection of critical internal defects such as pores cracks or inclusions. To obtain fundamental data on ultrasonic inspection of Ti alloy, ultrasonic testing was performed using a specimen with small drill holes and ultrasonic wave propagation velocites were measured.

  • PDF

Degradation Evaluation of Aged 1Cr-1Mo-0.25V Steel Using Coercive Force (보자력을 이용한 1Cr-1Mo-0.25V강 인공시효재의 열화도 평가)

  • Ryu, K.S.;Nahm, S.H.;Kim, Y.I.;Yu, K.M.;Son, D.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.288-293
    • /
    • 1999
  • The integrity of the turbine rotors can be assessed by the coercive force and Vickers hardness of the aged rotors at service temperature. The coercive force measurement system was constructed in order to evaluate material degradation nondestructively. The test specimen was 1Cr-1Mo-0.25V steel used widely for turbine rotor material, and then the seven kinds of specimens with different degradation levels were prepared by the isothermal heat treatment at $630^{\circ}C$. The coercive force of the test materials was measured at room temperature. Vickers hardness and coercive force decreased with the increase of degradation. The relationship between Vickers hardness and coercive force was investigated. The degradation of test material may be determined nondestructively by the relationship between Vickers hardness and coercive force.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Frequency Spectrum Analysis Method (주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk;Lee, In-Cheol;Chang, Hong-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.10-17
    • /
    • 2000
  • In boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants, conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also, these techniques have low practicality and applied only to component surfaces with good accessibility. It needs to apply a reliable and quantitative ultrasonic nondestructive evaluation method that can be replaced for these equipment. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for crept specimens were carried out for the purpose of nondestructive evaluation for creep damage. As a result of ultrasonic tests for crept specimens, we conformed that the high frequency side spectra decrease and central frequency components shift to low frequency band, and also their bandwidth decreases as increasing creep damage in backwall echos.

  • PDF

Development of On-line Sorting System for Detection of Infected Seed Potatoes Using Visible Near-Infrared Transmittance Spectral Technique (가시광 및 근적외선 투과분광법을 이용한 감염 씨감자 온라인 선별시스템 개발)

  • Kim, Dae Yong;Mo, Changyeun;Kang, Jun-Soon;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination($R^2_p$) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.

A Study on the Nondestructive Test Method for Adhesively Bonded Joint in Motor Case Assembly (연소관 조립체의 접착 체결부에 대한 비파괴 시험 방법 연구)

  • Hwang, Tae-Kyung;Lee, Sang-Ho;Kim, Dong-Ryun;Moon, Soon-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.343-352
    • /
    • 2006
  • In the present paper, the nondestructive test method was suggest to establish the bonding status of a motor case assembly composed of a steel motor case, adiabatic rubber layer and an ablative composite tube with strain data, AE(acoustic emission) signals and UT(ultrasonic test) data. And, finite element analysis was conducted to verify quantitatively the bonding status of motor case assembly under inner pressure loading. The bonding status could be judged whether the bonding status is perfect or contact condition by the data correlation study with AE signals and strain data measured from air pressure test. And, to classify the bonding status of motor case and rubber layer among bonding layers, UT method was also applied. From this study, the bonding status could be classified and detected into fourth types for all bonding layers as follows: (1) initial un-bonding, (2) perfect do-bonding during an air pressure test, (3) partially de-bonding during an air pressure test, and (4) perfect bonding.

The Study on Scattered Far-Field Analysis of Ultrasonic SH-Wave Using Boundary Element Method (경계요소법을 이용한 SH형 초음파 원거리 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.333-339
    • /
    • 1999
  • It is well recognized that ultrasonic technique is one of the most common and reliable nondestructive evaluation techniques for quantitative estimation of defects in structures. For the quantitative and accurate estimation of internal defects. the characteristics of scattered ultrasonic wavefields must be understood. In this study. the scattered near-field and far-field due to a circular cavity embedded in infinite media subjected to incident SH-waves were calculated by the boundary element method. The frequency response of the scattered ultrasonic far-field was transformed into the time-domain signal by obtaining its inverse Fourier transform. It was found that the amplitude of time-domain signal decreases and its time delay increases as the distance between the detecting point of ultrasonic scattered field and the center of internal cavity increases.

  • PDF

Nondestructive Evaluation for Grain Refinement of Aluminum Alloy of Equal-Channel Angular Pressing (ECAP 가공한 알루미늄합금의 결정립 미세화에 대한 비파괴평가)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Jin-Hwan;Kang, Suk-Bong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • The grain size of aluminum alloy was refined to the submicrometer level by using equal-channel angular pressing(ECAP). The effect of grain size refinement was evaluated by the tensile test, micro-hardness test, microstructure observations, ultrasonic test and acoustic emission test. The strength and the Vickers hardness were increased significantly according to grain size refinement after equal-channel angular pressed. The ultrasonic velocity was faster after equal-channel angular pressed, and the high frequency range appeared. The results of the ultrasonic velocity and the frequency range are expected to be basic data that can prove the grain size refinement