• Title/Summary/Keyword: 비파괴검사학회

Search Result 1,886, Processing Time 0.025 seconds

Evaluation of Nondestructive Evaluation Size Measurement for Integrity Assessment of Axial Outside Diameter Stress Corrosion Cracking in Steam Generator Tubes (증기발생기 전열관 외면 축균열 건전성 평가를 위한 비파괴검사 크기 측정 평가)

  • Joo, Kyung-Mun;Hong, Jun-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy600 HTMA tubes has been increasing. As a result, SGs with Alloy600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and abilty of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

Development of a Multichannel Eddy Current Testing Instrument(II) (다중채널 와전류탐상검사 장치 개발(II))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoo, Hyun-Joo;Kim, In-Chel
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2011
  • Recently, the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction phenomenon. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In the previous study, the synthesizer module and the analog module which is essential to the ECT system were primarily developed, and in this study the data acquisition and analysis program were developed. The operation system for this program is based on the Windows 7, and optimized for the Korean users, and the specific feature of this program using setup wizard enables inspector to make a setup easily for acquisition and analysis of ECT data. In this paper, the configuration and functions of eddy current data acquisition and analysis program will be introduced.

Non-destructive Test for Advanced Composite Structures (첨단복합재 구조물에 대한 비파괴 검사)

  • 진양준;한중원;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.165-173
    • /
    • 2002
  • 복합재부품의 제작후 검사로 적용될수 있는 방법은 방사선 투과검사와 초음파검사가 있으며, 전자는 특정 검사시에 국한되어 사용되며 그외의 검사에는 후자가 적용되는 것이 일반적이다. 복합재부품의 검사를 원활하게 수행하기 위해서는 초음파검사의 기본이론과 적용가능한 기법에 대한 이해가 필수적이다. 따라서 아래에서 초음파검사의 기본원리에 대해 간략하게 설명하고 그 실제 제작되고 있는 복합재부품에 대한 검사예를 살펴보고자 한다.

Flaw Sizing by ASME and CSA Code (ASME 및 CSA 코드에 의한 초음파 결함 크기 측정)

  • Park, Moon-Ho;Kang, Suk-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.313-320
    • /
    • 1998
  • To record and evaluate the flaws which were found during pre-service/in-service inspection performance of nuclear power plants in Korea, the center line beam method described in ASME code and 6 dB drop method stated in CSA code were used. The measured through wall dimensions and lengths by these methods were compared and analyzed in this report. With the measured data analysis, the ekact understanding and use of these methods improves the reliability of flaw sizing and assures the integrity of nuclear power plant components.

  • PDF

NDT of a Nickel Coated Inconel Specimen Using by the Complex Induced Current - Magnetic Flux Leakage Method and Linearly Integrated Hall Sensor Array (복합 유도전류-누설자속법과 고밀도 홀센서배열에 의한 니켈 코팅 인코넬 시험편의 비파괴검사)

  • Jun, Jong-Woo;Lee, Jin-Yi;Park, Duk-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.375-382
    • /
    • 2007
  • Nondestructive testing (NDT) by using the electromagnetic methods are useful for detecting cracks on the surface and subsurface of the metal. However, when the material contains both ferromagnetic and paramagnetic materials, it is difficult for NDT to detect and analyze cracks using this method. In addition the existence of a partial ferromagnetic material can be incorrectly characterized as a crack in the several cases. On the other hand a large crack has sometimes been misunderstood as a partially magnetized region. Inconel 600 is an important material in atomic energy plant. A nickel film is coated when a crack a appears on an Inconel substrate. Cracks are difficult to detect on the combined material of an Inconel substrate with a nickel film, which are paramagnetic and ferromagnetic material respectively. In this paper, a scan type magnetic camera, which uses a complex induced current-magnetic flux leakage (CIC-MFL) method as a magnetic source and a linearly integrated Hall sensor array (LIHaS) on a wafer as the magnetic sensors, was examined for its ability to detect cracks on the combined material. The evaluation probability of a crack is discussed. In addition the detection probability of the minimum depth was reported.

Development of $^{192}Ir$ Small-Focal Source for Non-Destructive Testing Application by Using Enriched Target Material (고농축 표적을 이용한 비파괴검사용 $^{192}Ir$ 미세초점선원 개발)

  • Son, K.J;Hong, S.B.;Jang, K.D.;Han, H.S.;Park, U.J.;Lee, J.S.;Kim, D.H.;Han, K.D.;Park, C.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.31-37
    • /
    • 2007
  • A $^{192}Ir$ small-focal source has been developed by using the HANARO reactor and the radioisotope production facility at the Korea Atomic Energy Research Institute (KAERI). The small-focal source with the dimension of 0.5 mm in diameter and 0.5 mm in length was fabricated as an aluminum-encapsulated form by a specially designed pressing equipment. For the estimation of the radioactivity, neutron self-shielding and ${\gamma}-ray$ self-absorption effects on the measured activity was considered. From this estimation, it is realized that $^{192}Ir$ small-focal sources over 3 Ci activities can be produced from the HANARO. Field performance tests were performed by using a conventional source and the developed source to take images of a computer CPU and a piece of a carbon steel. The small-focal source showed better penetration sensitivity and geometrical sharpness than the conventional source does. It is concluded from the tests that the focal dimension of this source is small enough to maximize geometrical sharpness in the image taking for the close proximity shots, pipeline crawler applications and contact radiography.

The Optimization of NDT Method for Real Time X-ray Imaging (X선 실시간 영상장치를 이용한 비파괴시험 조건 최적화 연구)

  • Na, Sung-Youb;Choi, Yong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.19-28
    • /
    • 1996
  • This study has investigated the optimization of NDT method and the minimum detectable defect size for complex structures such as the solid propellant rocket motor using real time X-ray imaging system. Test specimens were made of steel plates with various defect size, and installed with proper thickness for which solid propellant, rubber, and case converted to the steel equivalent thickness according to the radiographic equivalent theory. As the results, this examination obtained optimum magnification and X-ray energy, dose rate according to steel equivalent thickness, also, obtained the relationship between minimum detectable defect size and the ratio(defect depot/object thickness). Thus, this simulated test is the preliminary procedure before performing NDT for real objects, and is possibly applied for NDT of other complex structures.

  • PDF

Risk Assessment Technology of LNG Plant System (액화천연가스 플랜트 시스템 위험도평가 기술)

  • Choi, Song-Chun;Ha, Je-Chang;Lee, Mee-Hae;Jo, Young-Do;Chang, Yoon-Suk;Choi, Shin-Beom;Choi, Jae-Boong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.162-170
    • /
    • 2009
  • As one of promising solutions to overcome high oil price and energy crisis, the construction market of high value-added LNG plants is spotlighted world widely. The purpose of this manuscript is to introduce domestic activities to develop risk assessment technology against overseas monopolization. After analyzing relevant specific features and their technical levels, risk assessment program, non-destructive reliability evaluation strategy and safety criteria unification class are derived as core technologies. These IT-based convergence technologies can be used for enhancement of LNG plant efficiency, in which the modular parts are related to a system with artificial optimized algorithms as well as diverse databases of facility inspection and diagnosis fields.

Vibration-Based Nondestructive Evaluation of Thermal Stress-Induced Damage in Thin Composite Laminates (복합 적층 박판의 열응력 파손에 대한 진동 활용 비파괴평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam;Lee, Jong-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.347-355
    • /
    • 1999
  • A feasibility investigation on vibration-based nondestructive evaluation of thermal stress-induced micro-failure in the free edge region of thin composite laminates(1mm thick) has been carried out. The failure occurrence and damage zone, which were predicted by the three-dimensional finite-element thermal stress analysis, were observed using the ultrasonic C-scan and optical microscopy. Analysis of the vibration spectrum measured from the laminate beam specimens by the vibration sweep test exhibited that the obvious decrease in resonancy frequency and some considerable increase in damping factor were associated with the micro-failure formation. The vibration technique utilizing short beam and high resonant frequency was found to be very sensitive to the thermal stress-induced damage in the thin laminates.

  • PDF

Designing a Highly Sensitive Eddy Current Sensor for Evaluating Damage on Thermal Barrier Coating (열차폐코팅의 비파괴적 손상 평가를 위한 고감도 와전류 센서 설계)

  • Kim, Jong Min;Lee, Seul-Gi;Kim, Hak Joon;Song, Sung Jin;Seok, Chang Seong;Lee, Yeong-Ze
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.202-210
    • /
    • 2016
  • A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.