• Title/Summary/Keyword: 비파괴검사학회

Search Result 1,886, Processing Time 0.024 seconds

Soundness evaluation of friction stir welded A2024 alloy by non-destructive test (비파괴검사에 의한 A2024 마찰교반용접부의 건전성 평가)

  • Ko, Young-Bong;Kim, Gi-Beom;Park, Kyeung-Chae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.135-143
    • /
    • 2013
  • Friction Stir Welding (FSW) was developed, it is successfully commercialized in the field of transportation vehicles. In this study, we analyzed the defects of A2024-T4 alloy using non-destructive test of radiograph, ultrasonic, electrical conductivity and destructive test of microstructure observation, tensile strength. As the results of experiment, mapping of defects was obtained. Fine defects which were not detected in radiograph test were detected in ultrasonic test, and it enabled efficient detection of defects by difference of sound pressure and color. The values of electrical conductivity was decreased as amount of defects was increasing. Joint efficient of defect-free weldment that found by non-destructive and destructive test was 91%. Therefore it was considered that non-destructive test of friction stir welded A2024-T4 Alloy was an efficient method.

A Study on the Application of Non-destructive (Ultrasonic) Inspection Technique to Detect Defects of Anchor Bolts for Road Facilities (도로시설물 적용 앵커볼트 결함 검출을 위한 비파괴(Ultrasonic) 검사 기법 적용에 대한 연구)

  • Dong-Woo Seo;Jaehwan Kim;Jin-Hyuk Lee;Han-Min Cho;Sangki Park;Min-Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • The general non-destructive inspection method for anchor bolts in Korea applies visual inspection and hammering inspection, but it is difficult to check corrosion or fatigue cracks of anchor bolts in the part included in the foundation or in the part where the nut and base plate are installed. In reality, objective investigation is difficult because inspection is affected by the surrounding environment and individual differences, so it is necessary to develop non-destructive inspection technology that can quantitatively estimate these defects. Inspection of the anchor bolts of domestic road facilities is carried out by visual inspection, and since the importance of anchor bolts such as bridge bearings and fall prevention facilities is high, the life span of bridges is extended through preventive maintenance by developing non-destructive testing technology along with existing inspection methods. Through the development of this technology, non-destructive testing of anchor bolts is performed and as a technology capable of preemptive/active maintenance of anchor bolts for road facilities, practical use is urgently needed. In this paper, the possibility of detecting defects in anchor bolts such as corrosion and cracks and reliability were experimentally verified by applying the ultrasonic test among non-destructive inspection techniques. When the technology development is completed, it is expected that it will be possible to realize preemptive/active maintenance of anchor bolts by securing source technology for improving inspection reliability.

Quantitative NDE Thermography for Fault Diagnosis of Ball Bearings with Micro-Foreign Substances (미세 이물질이 혼입된 볼베어링의 고장 진단을 위한 정량화 열화상에 관한 비파괴평가 연구)

  • Hong, Dongpyo;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • In this study, a non-destructive evaluation (NDE) mothod is proposed for ball bearings contaminated with micro foreign substances, which were inserted into a ball bearing to create a defective specimen. The non-contact quantitative infrared thermographic technique was applied for NDE condition monitoring. Passive thermographic experiments were conducted to perform early fault diagnosis, for bearings operated at optimized torque status under a dynamic load condition. The temperature profiles for normal and defective specimens were quantitatively compared, and the thermographic data analyzed. Based on the NDE results, the temperature characteristics and abnormal fault detection of the ball bearing were quantitatively analyzed according to the rise in temperature.

Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties (마이크로/나노 비파괴평가 기술(II): 음향특성계측)

  • Kim, Chung-Seok;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.418-430
    • /
    • 2012
  • The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

Analysis of Non-Destructive Flaws in Ceramic Images (퍼지 이진화 방법을 이용한 세라믹 영상에서 결함 분석)

  • Hwang, Sun-Woo;Lee, Sun-Mi;Kim, Kwang-baek;Woo, Young Woon;Song, Doo Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.361-363
    • /
    • 2013
  • 비파괴 검사란 재료나 제품을 원형과 기능에 변화를 주지 않고 실시하여 원하는 정보를 획득할 수 있는 검사를 의미한다. 비파괴검사는 점검자의 육안 조사를 통한 수작업으로 이루어지고 있기 때문에 점검자의 주관이 개입되며, 점검자에 따라 검사 결과의 차이가 있을 수 있으므로 신뢰도의 차이가 발생하게 된다. 그러므로 본 논문에서는 비파괴 검사를 이용하여 획득한 세라믹 소재 영상에서 효율적으로 결함을 검출하는 방법을 제안한다. 제안된 방법은 세라믹 소재 영상에 가우시안 필터링 기법을 적용하여 잡음을 제거하고, Ends-in Search Stretching 기법을 적용하여 명암 대비를 강조한다. 명암 대비가 강조된 영상에 샤프닝 기법을 적용하여 윤곽선을 강조한다. 윤곽선이 강조된 영상에 $3{\times}3 $ Roberts 마스크를 적용하여 강조된 윤곽선을 추출하고, Glassfire 기법을 적용하여 라벨링한 후, 시그마 퍼지 이진화 기법과 형태학적 정보를 이용하여 잡음을 제거하고 결함 영역을 검출한다. 제안된 방법을 세라믹 소재 영상을 대상으로 실험한 결과, 효율적으로 결함을 검출하는 것을 확인할 수 있었다.

  • PDF