• Title/Summary/Keyword: 비파괴검사방법

Search Result 560, Processing Time 0.027 seconds

Automatic Crack Detection on Pressed Panels Using Camera Image Processing with Local Amplitude Mapping (카메라 이미지 처리를 통한 프레스 패널의 크랙결함 검출)

  • Lee, Chang Won;Jung, Hwee Kwon;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.451-459
    • /
    • 2016
  • Crack detection on panels during manufacturing process is an important step for ensuring the product quality. The accuracy and efficiency of traditional crack detection methods, which are performed by eye inspection, are dependent on human inspectors. Therefore, implementation of an on-line and precise crack detection is required during the panel pressing process. In this paper, a regular CCTV camera system is utilized to obtain images of panel products and an image process based crack detection technique is developed. This technique uses a comparison between the base image and a test image using an amplitude mapping of the local image. Experiments are performed in the laboratory and in the actual manufacturing lines to evaluate the performance of the developed technique. Experimental results indicate that the proposed technique could be used to effectively detect a crack on panels with high speed.

Radiant Energy Filtering to Enhance High Temperature Measurement by a Thermography System (고온 계측 열화상 시스템 구현을 위한 복사에너지 필터링 연구)

  • Yoon, Seok Tae;Cho, Yong Jin;Jung, Ho Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.466-473
    • /
    • 2016
  • In a shipbuilding process, thermal damage to the ship structure at the rear end results from an excessive heat input and conduction during welding process. To prevent such damage, appropriate control of the heat input, based on welding temperature measurement, is required. For temperature measurement, contact and non-contact methods are available; the thermography system is a popular non-contact temperature measurement. When the intensity of radiation from a high-temperature object is excessive, however, detecting the sensors of ordinary thermography systems leads to an inability in measuring the temperature due to saturation. Hence, this study suggests use of a neutral density filter that prevents an excessive amount of radiation from being accumulated in a thermography system, and thus makes it possible to quantitatively measure an object's temperature as high as $3000^{\circ}C$.

Development of Tomographic Scan Method for Industrial Plants (산업공정반응기의 감마선 전산 단층촬영기술 개발)

  • Kim, Jong-Bum;Jung, Sung-Hee;Moon, Jin-Ho;Kwon, Taek-Yong;Cho, Gyu-Seong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.20-30
    • /
    • 2010
  • In this paper, a new tomographic scan method with fixed installed detectors and rotating source from gamma projector was presented to diagnose the industrial plants which were impossible to be examined by conventional tomographic systems. Weight matrix calculation method which was suitable for volumetric detector and statistical iterative reconstruction method were applied for reconstructing the simulation and experimental data. Monte Carlo simulations had been performed for two kinds of phantoms. Lab scale experiment with a same condition as one of phantoms, had been carried out. Simulation results showed that reconstruction from photopeak counting measurement gave the better results than from the gross counting measurement although photopeak counting measurement had large statistical errors. Experimental data showed the similar result as Monte Carlo simulation. Those results appeared to be promising for industrial tomographic applications, especially for petrochemical industries.

Elastic Wave Detection using Fiber Optic FBG Sensor (광섬유 FBG 센서를 이용한 탄성파 검출)

  • Seo, Dae-Cheol;Kwon, Il-Bum;Yoon, Dong-Jin;Lee, Seung-Suk;Lee, Jung-Ryul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect or monitor preexisting defects and leaks in the vessel structures. A Bragg grating based acoustic emission sensor system is developed. Various type of fiber Bragg grating sensor including the variable length of sensing part was fabricated and prototype sensor system was tested by using PZT pulser and pencil lead break sources. Two types of sensor attachment were used. First, the fiber Bragg grating sensor was attached fully to the surface using bonding agent. Second one is that one part of fiber was attached to the surface partly by bonding and the other part of fiber will be act as a cantilever. That is, the resonant frequency of the fiber Bragg grating sensor will depend on the length of sensing part. The final goal of the sensor system is to provide on-line monitoring of cracks or leaks in reactor vessel head penetration of nuclear power plants.

Improved Estimation of Leak Location of Pipelines Using Frequency Band Variation (주파수 대역 변화를 이용한 배관의 누수지점 추정 개선 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.44-52
    • /
    • 2014
  • Leakage is an important factor to be considered for the management of underground water supply pipelines in a smart water grid system, especially if the pipelines are aged and buried under the pavement or various structures of a highly populated city. Because the exact detection of the location of such leaks in pipelines is essential for their efficient operation, a new methodology for leak location detection based on frequency band variation, windowing filters, and probability is proposed in this paper. Because the exact detection of the leak location depends on the precision of estimation of time delay between sensor signals due to leak noise, some window functions that offer weightings at significant frequencies are applied for calculating the improved cross-correlation function. Experimental results obtained by applying this methodology to an actual buried water supply pipeline, ~ 253.9 m long and made of cast iron, revealed that the approach of frequency band variation with those windows and probability offers better performance for leak location detection.

An Improved AE Source Location by Wavelet Transform De-noising Technique (웨이블릿 변환 노이즈 제거에 의한 AE 위치표정)

  • Lee, Kyung-Joo;Kwon, Oh-Yang;Joo, Young-Chan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.490-500
    • /
    • 2000
  • A new technique for the source location of acoustic emission (AE) in plates whose thichness are close to or thinner than the wavelength has been studied by introducing wavelet transform de-noising technique. The detected AE signals were pre-processed using wavelet transform to be decomposed into the low-frequency, high-amplitude flexural components and the high-frequency, low-amplitude extensional components. If the wavelet transform de-noising was employed, we could successfully filter out the extensional wave component, one of the critical errors of source location in plates by arrival time difference method. The accuracy of source location appeared to be significantly improved and independent of the setting of gain and threshold, plate thickness, sensor-to-sensor distance, and the relative position of source to sensors. Since the method utilizes the flexural component of relatively high amplitude, it could be applied to very large, thin-walled structures in practice.

  • PDF

A Practical Method of Acoustic Emission Source Location in Anisotropic Composite Laminates (이방성 적층복합재 구조에서 AE 발생원 위치표정을 위한 실용적인 방법)

  • Kim, Jeong-Kon;Kang, Yong-Kyu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.237-245
    • /
    • 2003
  • Since the velocity is dependent on the fiber orientation in anisotropic composites, the application of traditional acoustic emission (AE) source location techniques based on the constant velocity to composite structures has been practically impossible. The anisotropy makes the source location procedure complicated and deteriorates the accuracy of the location. In this study, we have divided the region of interest(ROI) into a set of finite elements, taken each element as a virtual source, and calculated the arrival time differences between sensors by using the velocities at every degree from 0 to 90. The calculated and the experimentally measured values of the arrival time difference aye then compared to minimize the location error. The results from two different materials, namely AA6061-T6 and CFRP(uni-directional; UD, $[0]_{32}4$) laminate confirmed the practical usefulness of the proposed method.

A Study on the Leakage Evaluation for Power Plant Valve Using Infrared Thermography Method (적외선열화상에 의한 발전용 밸브 누설명가 연구)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.110-115
    • /
    • 2010
  • This study was conducted to estimate the feasibility using thermal image measurement that is applicable to internal leak diagnosis for the power plant valve. Abnormal heating of valve surface associated with high temperature steam f10w toward valve outlet side in the condition of low temperature is a primary indicator of leakage problems in high temperature and pressure valves. Thermal imaging enables to see the invisible thermal radiation that may portend impending damage before their condition becomes critical. When steam flow in valve outlet side in the condition of low temperature is converted into heat transmitted through the valve body due to the internal leakage in valve. The existence of abnormally increasable leakage rate in the valve will result in abnormally high levels of heat to be generated that can be quickly identified with a thermal image avoiding energy loss or damage of valve component. From the experimental results, it was suggested that the thermal image measurement could be an effective way to precisely diagnose and evaluate internal leak situation of valve.

Excessive Leakage Measurement Using Pressure Decay Method in Containment Building Local Leakage Rate Test at Nuclear Power Plant (원전 격납건물 국부누설률시험에서의 압력감소법을 이용한 과다누설 측정 방법)

  • Lee, Won Kyu;Kim, Chang Soo;Kim, Wang Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.231-235
    • /
    • 2016
  • There are two methods for conducting the containment local leakage rate test (LLRT) in nuclear power plants: the make-up flow rate method and the pressure decay method. The make-up flow rate method is applied first in most power plants. In this method, the leakage rate is measured by checking the flow rate of the make-up flow. However, when it is difficult to maintain the test pressure because of excessive leakage, the pressure decay method can be used as a complementary method, as the leakage rates at pressures lower than normal can be measured using this method. We studied the method of measuring over leakage using the pressure decay method for conducting the LLRT for the containment building at a nuclear power plant. We performed experiments under conditions similar to those during an LLRT conducted on-site. We measured the characteristics of the leakage rate under varies pressure decay conditions, and calculated the compensation ratio based on these data.

Signal Processing Algorithm for Controlling Dynamic Bandwidth of Fiber Optic Accelerometer (광섬유 가속도계 센서의 동적구간 조절을 위한 신호처리 알고리즘 개발)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.291-298
    • /
    • 2007
  • This paper presents a signal processing algorithm to control the dynamic bandwidth of a single-degree-of-freedom (SDF) dynamic sensor system. An accelerometer is a representative SDF sensor system. In this paper, a moire-fringe-based fiber optic accelerometer is newly used for the test of the algorithm. The accelerometer is composed of one mass, one damper and one spring as a SDF dynamic system. In order to increase the dynamic bandwidth of the accelerometer, it is needed to increase the spring constant or decrease the mass. However, there are mechanical difficulties of this adjustment. Therefore, the presented signal processing algorithm is very effective to overcome the difficulties because it is just adjustment in the signal processing software. In this paper, the novel fiber optic accelerometer is introduced shortly, and the algorithm is applied to the fiber optic accelerometer to control its natural frequency and damping ratio. Several simulations and experiments are carried out to prove the performance of the algorithm. As a result, it is shown that the presented signal processing algorithm is a good way to broaden the dynamic bandwidth of the fiber optic accelerometer.