• Title/Summary/Keyword: 비틀림 응력비

Search Result 161, Processing Time 0.022 seconds

Long-Term Torsional Analysis of Prestressed Concrete Members with the Effects of Creep and Shrinkage (크리이프 및 건조수축의 영향을 고려한 프리스트레스트콘크리트 부재의 장기 비틀림 해석)

  • Oh, Byung Hwan;Park, Chang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.741-749
    • /
    • 1994
  • The purpose of the present study is to propose a realistic method to analyze the prestressed concrete members subjected to long term torsional loading. The present study devises a method to realistically take into account the tensile stiffness of concrete after cracking. The effects of biaxial compressive and tensile loadings on the compressive and tensile strengths of concrete are also taken into account in the present model. The salient feature of the present study lies in the fact that the cracking, creep, and shrinkage behavior of concrete and the relaxation of steel have been realistically considered. The comparison of the present theory with experimental data indicates that the proposed model dipicts reasonably well the actual behavior of prestressed concrete members under long-term torsional loadings.

  • PDF

A Numerical Study on Nonprismatic Flexural Member for Evaluating Structural Capacity (구조물 사용성 증진을 위한 변단면 휨부재에 대한 해석적 연구)

  • Son, Ji-Min;Kim, Jae-Heung;Park, Jong-Sup;Gwak, Sung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.101-104
    • /
    • 2008
  • 일반적으로 연속경간을 가지는 강합성 I-형강 교량에 있어서 내부 지점 부근에서 상대적으로 큰 부모멘트가 발생하므로, 이에 경제적인 단면 활용을 위하여 변단면을 적용하여 휨강도를 증가시킨다. 본 연구에서는 기존 강도계산식에 관한 연구를 토대로 하여 비탄성 구간에 있는 변단면 I형보의 횡-비틀림 좌굴강도를 유한요소해석프로그램 ABAQUS(2007)를 이용하여 산정하고, 간편한 설계식을 제안하고 있다. 지간 한쪽 끝에 계단식 단면변화를 가지는 보에 대해서 고려하였으며, 플랜지 길이방향 비, 너비방향 비, 두께의 비로 계단식 I형보를 나타내었다. 해석에 사용된 단면매개변수는 36가지 조합이며, 비탄성 횡-비틀림 거동을 고려하기위하여 잔류응력 및 초기결함을 고려한 비선형해석을 실시하였는데, Pi(1995)등이 고려한 잔류응력의 형상과 국내 I형강 표준 치수 허용치에 근거하여 부재 길이의 0.1%를 초기제작오차로 고려하였다. 해석모델의 양쪽 끝단에는 모멘트하중을 재하하였다. 개발 제한된 식은 선형 모멘트 하중이 작용할 때 적용가능한 식으로 경제적이고 합리적인 설계에 적극 활용될 수 있을 것이다.

  • PDF

極小 Energy 定理와 그 應용 II

  • 양원호
    • Journal of the KSME
    • /
    • v.20 no.4
    • /
    • pp.296-302
    • /
    • 1980
  • 이상에서 potential energy의 극소조건을 각종경우에 적용하여 재료역학의 해 또는 변형의 근사 해를 응용 예들을 통하여 구해 보았다. 이 해법은 을 받은 부재, 보(beam) 또는 순수 비틀림을 받는 엔형봉재의 경우, 부정정 문제에서 그 지지점들에서의 반력요소를 생각할 필요가 없기 때 문에 재료 역학적인 해법보다 더 간편하게 구해지고 있는 것을 볼 수가 있다. 또 보의 처짐 곡 선이 길이의 중앙면에 대하여 좌우 대칭형일 때에, 중앙단면에서의 최대처짐을 구하는데 삼각 함수의 근사처짐 곡선을 설정하므로써 실제 엄밀해에 가까운 근사값이 간단하게 구해질 수 있는 것을 보였다. 이 극소에너지 정리는 엔형단면이 아닌 각종 단면봉재의 비틀림 문제에서도 비틀림 응력함수를 도입하고, 경제조전을 만족하는 근사공력 함수방정식을 가정함으로써 간단하게 그 근사해를 구하는 데까지 직장할 수가 있다.

  • PDF

Influence of the Geometry of Guide Groove on Stress Corrosion Index of Rock in Double Torsion Test (이중 비틀림 시험에서 유도 홈의 형상이 암석의 응력부식지수에 미치는 영향)

  • 정해식;미원우삼;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.363-372
    • /
    • 2004
  • Double torsion (DT) tests were carried out to investigate the influence of the geometry of guide groove on stress corrosion index of Kumamoto andesite. The fracture toughness was measured in the constant displacement rate, which was set to 2.07 MN/m$^{3}$2/ in average regardless of crack velocity. Stress corrosion indices, n were evaluated using specimens with rectangular, circular and triangular grooves and were 37, 36 and 38 in average, respectively. The n values were constant regardless of the groove geometry, however the DT specimen with triangular groove geometry showed the largest standard deviation in the relationship between crack velocity and stress intensity factor. The DT test was found to be effective in using a rectangular-grooved specimen and the width of the groove must be greater than the average grain size of minerals.

A Study on Moment Gradient Factor for Inelastic Lateral-Torsional Buckling Strength of Stepped I-Beam Subjected to Linear Moment Gradient (선형 모멘트 하중을 받는 계단식 단면변화 I형보의 비탄성 횡-비틀림 좌굴강도산정을 위한 모멘트 구배계수 연구)

  • Park, Jong-Sup;Son, Ji-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2007) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to linear moment gradient and resulted in the development of design equations. The ratios of the flange thickness, flange width, and stepped length of beam are considered for the analytical parameters. Two groups of 27 cases and 36 cases, respectively, were analyzed for doubly and singly stepped beams in the inelastic buckling range. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi and Trahair (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic lateral-torsional buckling problem and increase efficiency in building and bridge design.

Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation (비틀림 변형 중 ITO 필름의 시편 형태에 따른 기계적 전기적 파괴 연구)

  • Kwon, Y.Y.;Kim, Byoung-Joon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.53-57
    • /
    • 2017
  • The most representative transparent electrode in the modern society is ITO (Indium Tin Oxide). ITO is widely used in general for touch panels and displays due to its high electrical and optical properties. However, in general, mechanical deformation causes deterioration and destruction of device properties because ITO is basically vulnerable to mechanical deformation. Therefore, the in-depth understanding on the stability of ITO film during various mechanical deformations is necessary. In this study, the reliability and mechanical properties ITO sample having different length, width, and area were investigated. The electrical stability was estimated according to electrical resistance change. The stability was dropped as the sample length, and width increased and the sample area decreased. The electrical stability of ITO film was correlated with twisting strain including tensile, compressive and shear stress.

Behavior of Sand during Large Stress Reversal in Torsion Shear Test (비틀림전단시험에 의한 대응력반전시 모래의 거동)

  • 홍원표;남정만
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.3-17
    • /
    • 1999
  • Torsion shear tests under various stress paths were performed to study the behavior of sand during large stress reversal. The stress paths can be classified into the clockwise and the counterclockwise according to torque applied to specimen, and the directions of plastic strain incremental on the stress paths including large stress reversal are compared with the direction of stress state and stress incremental. From test results, the isotropic hardening theory using the principle of St. Venant desirably showed that direction of plastic strain incremental coincided with stress state on primary loading part and nearby failure point, but it might result in a rough approximation on part of unloading and reloading by stress reversal.

  • PDF

The Effects of Principal Stress Rotation in K0-Consolidated Clay (K0-압밀점토(壓密粘土)의 주응력회전(主應力回轉) 효과(効果))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.159-164
    • /
    • 1988
  • The directions of the principal strain increment, stress, and stress increment during rotation of the principal stress axes at any stress level was studied for $K_0$-consolidated clay using torsion shear apparatus with individual control of the vertical stress, the confining pressure, and the shear stress on hollow cylinder specimens under undrained and drained condition. The torsion shear tests were performed according to predetermined stress-paths, which were chosen to cover over the full range of rotation of principal stress axes. The test results indicated that the strain increment vectors at failure coincided with the stress vectors. That is, the direction of strain increment coincided with the direction of stress increment at small stress levels and with the direction of stress at higher stress levels, which indicated that the behavior of clay was transfered from elastic to plastic as the stress level was increased. The applicability of the elastoplastic theory for modeling of the behavior of clay during rotation of the principal stress axes was given.

  • PDF

Nonlinear Analysis of Reinforced Concrete Shear Wall Using Mander's Fiber Section Analysis Method (Mander의 층상화 단면 해석방법을 이용한 철근콘크리트 전단벽체의 비선형해석)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.111-119
    • /
    • 2005
  • The objective of this study is to predict fracture movements accurately and reliably by nonlinear analysis of the response of RC shear wall or RC flange sections. Hognestad's and Vallenas's theories are used for concrete model and Ramberg-Osgood's theory is used for steel model. Non-linear analysis considering confined concrete and unconfined concrete is performed. Mander's Fiber Approach Section analysis, new strain profile considering the Gamma factor are used to this section analysis. The section analysis considering cases of precracked, uncracked, boundary warping and shear warping is performed.

Study on Torsional Strength of Induction-Hardened Axle Shaft (고주파 열처리를 고려한 액슬 축 비틀림 거동 연구)

  • Kang, Dae-Hyun;Lee, Bum-Jae;Yun, Chang-Bae;Kim, Kang-Wuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.645-649
    • /
    • 2010
  • Induction hardening has been used to improve the torsional strength and characteristics of wear for axle shaft that is used to transmit driving torque from the differential to the wheel in automobiles. After the rapid heating and cooling processes of induction hardening are carried out, the shaft has residual stress and material properties change; this affects the allowable transmitted torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction-hardened axle shafts with residual stress. In this study, the finite element method is used to study the thermomechanical behavior of the material, and the results are compared with experimental results. The results indicate that the torsional strength of the axle shaft depends on the surface hardening depth and distribution of residual stress.