• Title/Summary/Keyword: 비틀림형

Search Result 182, Processing Time 0.036 seconds

Analysis of dynamics characteristics of water injection pump through the 2D finite element (2D 유한요소 해석을 통한 Water injection pump의 동특성 분석)

  • LEE, JONG-MYEONG;KIM, YONG-HWI;KIM, JUN-HO;CHOI, HYEON-CHEOL;CHOI, BYEONG KEUN
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.408-414
    • /
    • 2014
  • After drilling operations at the offshore plant to production to crude oil to high pressure. After that time the low pressured of pipe inside when the secondary produce so oil recovery is reduced. At that time injection sea water at the pipe inside through water injection pump that the device Increase recovery so to be research and development at many industry. So developing 3-stage water injection pump at the domestic company. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic. In this paper, a 2D finite element analysis is performed through the dynamics of the present study was the validation of the model.

  • PDF

Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft (틸트로터 항공기 복합재료 날개의 진동 제어)

  • Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2007
  • Mathematical modeling and vibration control of a tiltrotor aircraft composite wing-rotor system are investigated in this study. A wing-mounted rotor can be tilted from the vertical position to a horizontal one, and vice versa. Effect of vibration control of the wing-rotor system via piezoelectricity is studied as a function of tilt angle, ply angle of composite wing and rotor's spin speed. Composite wing is modeled as a thin-walled box beam having a circumferentially uniform stiffness configuration that produces elastic coupling between flap-lag and between extension-twist behavior. Numerical simulations are provided and pertinent conclusions are outlined.

3-D Aeroelastic Model Test of a Cable-Stayed Bridge with a Main Span of 1,200m (주경간장 1,200m 사장교의 3차원 풍동실험)

  • Sin, Seung-Hwan;Kim, Yeong-Min;Gwak, Yeong-Hak;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.70-70
    • /
    • 2011
  • 사장교의 적용지간이 증가하여 초장대화하면서 구조안전성을 확보하기 위한 다양한 노력이 시도되고 있다. 본 연구에서는 현재까지 시도된 적이 없는 주경간 1,200m 사장교의 내풍안정성을 검토하기위하여 3차원공탄성 모형을 제작하고 풍동실험을 수행하였다.(그림1 참조) 실험대상 구조물은 내풍안정성 증대를 위해 유선형 박스거더를 채용하고 케이블이 거더와 함께 비틀림에 저항하도록 2면 케이블을 적용하였다. 구조적인 측면에서는 보강형 자중감소를 위해 전경간을 강박스로 계획하였으며 측경간에 부반력제어를 위한 Counter Weight을 적용하였다. 실험대상 구조물은 완성계, 가설계95%, 가설계50%, 가설계45%로 모형을 해체하면서 진행하였고 가설단계 별로 내풍케이블의 수량과 형상을 달리하여 내풍안정성 개선효과를 확인하고자 하였다. 3차원 풍동실험 결과 완성계에서 교량의 안전성에 심각한 문제를 발생시킬 수 있는 와류진동, 플러터, 버페팅과 같은 유해한 진동현상이 발견되지 않았으며, 시공중 내풍안정성 확보를 위하여 대상교량에 내풍케이블을 설치하고 내풍케이블의 수량 및 배치형상에 따른 진동제어 효과를 검토하였다. 본 실험은 현재 풍동실험 요소기술을 이용하여 1,200m급 사장교 풍동실험을 수행하였고 이에 따라 교량이 초장대화 되면서 스케일다운에 따른 보강형질량, 케이블 간격 등 실험모형 제작상 문제점을 확인 할 수 있었으며 이러한 경험을 토대로 향후 1,000m 이상급 초장대 사장교 내풍설계를 위한 기초자료로 활용이 가능할 것으로 사료된다.

  • PDF

The Effect of Exhaust Performance by according to Active Muffler Valve Spring (능동형 소음기의 밸브 스프링이 배기 성능에 미치는 영향)

  • Kong, T.W.;Yi, C.S.;Chung, H.S.;Jeong, H.M.;Suh, J.S.;Chun, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.682-687
    • /
    • 2001
  • This study represents effect of exhaust performance by according to active muffler valve spring. The experimental parameter were divided engine speed and torsion coil spring constant. The sound pressure level was generally low at engine speed 2000-2500rpm but That was showed the lowest at spring constant k=0.75. Flow speed of exhaust gas was showed the fast at spring constant k=0.75 but the low value was showed at k=0.97. It was contained a rather low concentration of carbon monoxide(CO) at engine speed 2000-2500rpm and k=0.81, low concentration of hydrocarbon(HC) at spring constant k=0.81 but that was high at spring constant k=0.97. A conclusion based on FFT analysis was generally low concentration value at k=0.79 and k=0.81. The temperature distributions into the muffler was shown similar conditions. Heat transfer was well spreaded at thermocouple No.8 because valve was opened.

  • PDF

The Vibration Characteristic and Fatigue Life Estimation of a Small-scaled Hingeless Hub System with Composite Rectangular Blades (복합재료 기준형 블레이드를 장착한 축소 힌지없는 허브시스템의 진동특성과 피로수명 예측)

  • Song, Keun-Woong;Kim, Jun-Ho;Kim, Duck-Kwan;Joo, Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper described that rotating test and fatigue test of a small-scale hingeless hub system with composite rectangular blades. Generally Rotating stability and fatigue test technique is one of Key-technology on test and evaluation for helicopter rotor system Rotating test of hingeless rotor system was achieved by means of rotor vibration characteristic and aeroelastic stability test GSRTS, equipped with hydraulic actuator and 6-component rotating balance was used to test hingeless rotor system especially for an observation of blade motion including flawing, lagging and feathering. Rotating test was done in hover and forward flight condition. Small-scaled blade fatigue test condition was determined by blade load analysis with the reference table of composite materials(S-N curve). Fatigue test bench was developed for the estimation of blade fatigue life, and tested its characteristic.

  • PDF

Experimental Study on the Buckling Behavior of L-Shaped Header System (L-헤더 시스템의 좌굴 거동에 관한 실험 연구)

  • Park, Wan Soon;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.665-674
    • /
    • 2002
  • The back-to-back and box-shaped headers used in light gauge steel structures have some disadvantages, i.e., construction efficiency and cost competitiveness. As such, cold-formed steel L-shaped headers have been developed and are used actively in advanced nations. However, this system has not been used in Korea because of inadequate investigation and adaptation efforts and lack of application example. Thus, this research evaluated the structural performance of L-header using buckling analyses and bending tests. Test results were compared using the AISI design criteria. Test results showed that local buckling and distortional buckling governed buckling behavior in gravity loads and uplift loads, respectively. These results were consistent with the calculated nomial strengths using the AISI design criteria.

Development of Twisted Rudder to Reduce Fuel Oil Consumption for Medium Size Container Ship (중형 컨테이너선의 연료절감형 비틀림 타 개발)

  • Chun, Ho-Hwan;Cha, Kyung-Jung;Lee, Inwon;Choi, Jung-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.169-177
    • /
    • 2018
  • Twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin have been developed computationally for 3,000 TEU container ship through parametric study. The objective function is to minimize delivered power in model scale. Design variables are twisted angle, rudder bulb diameter and fin angle. The governing equation is Reynolds averaged Navier-Stokes equations in an unsteady turbulent flow and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. The calculation was carried out in towing and self-propulsion conditions at design speed. The sliding mesh technique was employed to simulate the flow around the propeller. Form factor is obtained from the towing computation. Self-propulsion point is obtained from the self-propelled computations at two propeller rotating speeds. The delivered power due to the designed twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin are reduced by 1.1%, 1.6%, and 2.0%, respectively.

Effects of H-type Sleeper on the Track Behavior (궤도거동에 대한 H형 침목의 영향)

  • Yun, Kyung-Min;Seo, Dong-Seok;Kim, Hae-Gon;Hwang, Kwang-Ha;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4185-4191
    • /
    • 2015
  • The demand for improved rail transportation safety is growing due to the increased speeds of current railways. In addition, freight trains with heavier axle loads are required to run on conventional railways. In order to meet these requirements, increased rail weights and the application of a CWR system have been introduced on conventional railways. The H type sleeper, which has higher lateral resistance than the existing mono sleepers, has been recently developed to increase track stiffness and reduce track irregularities. In this paper, the effects of a H-type sleeper on track behavior were investigated by 3-Dimensional F.E. analysis.

A Study on the Safety Estimation of Low Pressure Torsion mounted Turbine Blade (비틀림 마운트형 저압 터빈 블레이드의 안전성 평가에 관한 연구)

  • 홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • The estimation of fatigue limit for the component with complicated shape is difficult than of standard fatigue specimen, due to complex test equipment. So, we substitute maximum principle stress from FEM results for fatigue limit diagram made by standard fatigue specimen. Then we can estimate endurance safety of component with high trust. The static stress analysis, the nonlinear contact stress analysis and the model analysis for turbine blade is performed by ANSYS ver. 5.6. the comparison of maximum static stress around hole with maximum contact stress between pun and hole can make the cause of fracture for turbine blade clear. The difference of fatigue limit between fatigue test by standard specimen and in-service mechanical components is due to surface roughness and machining condition etc. In in-service mechanical components, Goodman diagram has to consider surface roughness for failure analysis. To find fracture mechanism of torison-mounted blade in nuclear plant. This study performs the static stress, the nonlinear contact stress and the modal analysis on torison-mounted blade with finite element method and makes the estimation for safety of turbine blade.

Aerodynamic Optimization of Helicopter Blade Planform (I): Design Optimization Techniques (헬리콥터 블레이드 플랜폼 공력 최적설계(I): 최적설계 기법)

  • Kim, Chang-Joo;Park, Soo-Hyung;O, Seon-Gu;Kim, Seung-Ho;Jeong, Gi-Hun;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1049-1059
    • /
    • 2010
  • This paper treats the aerodynamic optimization of the blade planform for helicopters. The blade shapes, which should be determined during the threedimensional aerodynamic configuration design step, are defined and are parameterized using the B$\acute{e}$zier curves. This research focuses on the design approaches generally adopted by industries and or research institutes using their own experiences and know-hows for the parameterization and for the definition of design constraints. The hover figure of merit and the equivalent lift-to-drag ratio for the forward flight are used to define the objective function. The resultant nonlinear programming (NLP) problem is solved using the sequential quadratic programming (SQP) method. The applications show the present method can design the important planform shapes such as the airfoil distribution, twist and chord variations in the efficient manner.