• Title/Summary/Keyword: 비진공 코팅 기술

Search Result 46, Processing Time 0.031 seconds

CVD에 의한 흑연페블의 SiC 코팅기술 개발

  • Yu, In-Geun;Park, Lee-Hyeon;An, Mu-Yeong;Gu, Deok-Yeong;Jo, Seung-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.231-231
    • /
    • 2012
  • 7개 나라가 참여해서 공동으로 제작하고 있는 국제핵융합실험로(ITER)는 2020년경에 제작 설치가 완료될 예정이다. ITER 장치에는 6개의 시험 블랑켓 모듈(Test Blanket Module : TBM)이 장착될 예정이며, 그 중에서 한국도 1개를 독자적으로 제작해서 설치할 예정이다. 한국형 헬륨 냉각 고체형 증식(Helium Cooled Solid Breeder : HCSB) TBM이며, 한국은 ITER 참여국 중 유일하게 중성자 반사 재료를 채택한 것이 특징이다. 중성자 반사재료로는 지름 1 mm 내외의 흑연 페블에 SiC를 코팅해서 사용할 예정이다. SiC는 고온저방사화 물질로 차세대 핵융합로의 구조 재료로도 개발되고 있는 물질로, 이렇게 하면 흑연의 단점인 기계적 특성 향상뿐만 아니라, 산화나 화재 등에 대한 사고의 부담도 크게 줄일 수 있는 장점이 있다. 흑연위에 SiC를 코팅하는 방법은 여러 가지가 있으며, 그 중에서 비교적 간단한 건식 방법은 RF Sputtering, PECVD 등이 있다. 건식은 코팅방법이 간단하고 비교적 쉬운 편이지만 페블표면에 양질의 SiC 박막을 얻기가 쉽지 않은 단점이 있다. 이들 방법보다 습식법은 코팅이 까다롭지만 양질의 코팅막을 비교적 쉽게 얻을 수 있는 장점이 있다. CVD의 경우 전구체 물질로 여러 가지 물질이 사용될 수 있으며 대표적으로 $SiH_4$, $Si(CH_3)_4$, $CH_3SiCl_3$ 등이 있으며, 캐리어 가스로는 $H_2$가 사용된다. 이렇게 얻어진 SiC 코팅페블은 흑연에 비해 파괴강도도 향상되고 마모 등에 강한 것을 확인할 수 있었다.

  • PDF

금속 나노와이어 투명전극을 사용하여 제작한 비휘발성 메모리 소자의 전기적 특성

  • Seong, Si-Hyeon;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.367.1-367.1
    • /
    • 2016
  • 투명 전극은 유기 발광소자, 태양전지, 센서와 같은 다양한 분야에 응용되고 있으며, indium-tin-oxide(ITO)는 현재 다양한 소자의 투명 전극으로 가장 많이 사용하고 있다. 그러나 높은 가격과 유연성이 좋지 않은 ITO 소재를 대체하는 기술로 현재 금속 나노와이어를 사용하려는 시도가 진행되고 있다. 금속 나노 와이어 투명전극은 높은 전도성, 높은 광학적 투과율, 간단한 공정, 우수한 유연성 및 열 안정성의 장점을 가지고 있어 플렉서블 소자에 응용 가능성을 보여주고 있다. 본 연구에서는 금속 나노와이어 투명전극 기판 제작 방법과 이를 이용한 유기 쌍안정 메모리 소자의 전기적 특성을 관찰하였다. 세척한 PET 기판 위에 금속 나노와이어를 스핀코팅 방법으로 분산하고, 그 위에 금속 나노와이어의 표면 거칠기와 전도성을 증진하기 위해 PEDOT:PSS 층을 스핀코팅하여 플렉서블 투명전극을 제작하였다. 플렉서블 금속 나노와이어 투명전극 기판을 하부 전극으로 사용하고, 그 위에 금 나노입자가 포함된 유기물 층을 다시 한번 스핀코팅 방식으로 적층하였다. 마지막으로 알루미늄 상부 전극을 열 증착하여 비휘발성 메모리 소자를 제작하였다. 이렇게 제작된 소자의 전류-전압 측정 결과는 높은 전도도와 낮은 전도도의 차이를 갖는 전기적 특성을 확인할 수 있다.

  • PDF

금속이 코팅된 PET필름의 수분침투 특성 평가

  • Hwang, Bin;Choe, Yeong-Jun;Park, Gi-Jeong;Kim, Hoe-Bong;Jo, Yeong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.351-351
    • /
    • 2010
  • OLED(organic light emitting diode)는 액정디스플레이를 대체할 차세대 평판디스플레이로 많은 주목을 받고 있다. 현재 많이 사용되고 있는 OLED의 기판재료는 Glass기판이지만 차세대 Flexible한 display에서의 적용을 위해서는 가볍고 유연한 plastic을 기판 재료로 사용 할 것으로 보인다. 하지만 plastic이 기판재료로 된 OLED의 가장 큰 단점중의 하나가 수분과 산소에 민감하여 열화를 초래한다는 것이다. 이런 수분침투와 열화 과정으로 인해 OLED의 발광효과가 약해져 OLED의 수명과 직접적으로 연결된다. 하여 외부에서 OLED내부로 유입되는 산소, 수분으로 부터 발광재료와 전극의 산화를 방지하며 외부의 충격으로부터 소자를 보호하기 위한 봉지기술은 반드시 필요하다. 따라서 본 연구에서는, flexible한 OLED에 적용되는 금속 코팅한 막의 적층구조 및 기판의 노출온도에 따른 금속 코팅막의 수분침투 특성에 대해 MOCON의 weight gain test (WGT)를 통해 barrier layer에 대해 평가하고 이에 대한 mechanism을 확립하는데 그 목적이 있다. 금속을 코팅한 막은 OLED의 cathode와 anode 재료로 많이 사용되는 Al과 ITO를 sputter장비를 이용해 single layer와 double-layer의 두 가지 구조로 PET기판에 증착하였다. 증착한 Al막의 두께는 각각 50 nm, 100 nm, 200 nm, 400 nm 등 4가지로 하였다. double-layer의 경우에는 총 두께를 절반씩 기판의 양쪽에 증착하였다. 적층구조에 따른 수분침투 특성 평가 결과로 보면 같은 두께일 때 double-layer는 single layer에 비해서 모든 시편에서 수분의 투습율이 낮음으로써 더 좋은 수분침투의 barrier 특성을 나타내었다. 특히 100 nm이상인 경우 투습율은 예상한 값보다 50%이상 낮게 나타났다.

  • PDF

Fabrication of CIGS Thin Film Solar Cell by Non-Vacuum Nanoparticle Deposition Technique (비진공 나노입자 코팅법을 이용한 CIGS 박막 태양전지 제조)

  • Ahn, Se-Jin;Kim, Ki-Hyun;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.222-224
    • /
    • 2006
  • A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.

  • PDF

최적화된 대면적 스퍼터링 캐소드를 이용한 Si/SiO2 박막 제조 및 특성 평가

  • Kim, Yeong-Tae;Park, Seung-Il;Kim, Tae-Hyeong;No, Tae-Uk;Kim, Man-Tae;Park, Hyeong-Sun;Son, Seon-Yeong;Yun, Seung-Jin;Jeon, Mu-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.459-459
    • /
    • 2010
  • 대면적 마그네트론 스퍼터링 캐소드를 이용하여 고효율 스퍼터링을 실현하기 위해서는 진공 상태에서 하전입자의 손실을 최소화하여 플라즈마 내에 많은 입자를 구속하는 기술이 요구된다. 본 연구에서는 고효율 특성을 갖는 대면적 캐소드($127mm{\times}900mm$) 설계를 위해 유한요소법(Finite Element Method) 수치해석 알고리즘을 이용한 3차원 전자장(Magnetostatic) 시뮬레이션 툴을 이용하여 최적화된 캐소드를 설계하였다. 캐소드 타겟 배면에 생성되는 자기장의 3차원 특성 해석을 통해 타겟효율에 가장 큰 영향을 미치는 자속밀도의 관계를 분석하였다. 고효율 캐소드 구조 설계를 위해서는 타겟 배면에 평행한 자속밀도의 분포를 최대한 확보를 것이 매우 중요하다. 이러한 특성을 확보하기 위하여 캐소드 내부에 장착되는 자석 크기 및 특성에 따른 자속밀도 특성을 해석하였다. 개발된 마그네트론 캐소드에 Si 타겟을 장착하였다. 캐소드 특성 평가를 위해 Ar 분위기 및 $O_2$를 동시에 인가하여 Si 및 $SiO_2$ 박막을 유리기판에 코팅하였다. 코팅된 박막의 특성 평가는 결정구조와 두께에 따른 투과율 및 반사율 측정을 수행하였다. Si 박막의 경우, 갈색의 코팅막을 형성하였으며, $SiO_2$의 경우, 투명한 박막으로 증착되었고 조성분석(EDXS)에 의해 $SiO_2$로 잘 코팅되었음을 확인할 수 있었다. 그리고, $SiO_2$가 코팅된 막의 투과율은 유리기판에 비해 1% 정도 향상되었음을 확인할 수 있었다. 마그네트론 캐소드 성능은 Si 타겟의 erosion 형상 분석과 3차원 유한요소법 프로그램을 이용한 자기장 분석을 통해 비교 분석하였다.

  • PDF

ta-C 후막코팅을 이용한 비철금속가공용 절삭 공구류의 수명향상에 관한 연구

  • Jang, Yeong-Jun;Gang, Yong-Jin;Kim, Dong-Sik;Lee, Ui-Yeong;Kim, Jong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.132-132
    • /
    • 2016
  • 기계 가공품의 정밀화, 경량화 요구로 난색재로 분류되는 비철분야 및 복합재 가공용 공구개발에 대한 수요가 급증하고 있으나, 기존 난삭재 가공 시 절삭공구의 마모가 빠르고, 상대재의 융착 불량 등이 공구 수명 감소의 주요 영향으로 보고된다. 상기문제를 해결하기 위해 절삭가공 공정 중 과다한 절삭유의 사용에 따른 가공비용, 에너지소모 증가, 환경오염 등으로 절삭유의 최소화 또는 절삭유를 사용하지 않는 표면처리기술등의 친환경 가공기술의 개발이 필요하다. 내융착 및 내마모 특성 향상을 위한 표면코팅 방법으로 수소가 포함되지 않은 고경도 비정질 카본 (ta-C)이 있으나, ta-C 코팅 막은 경도 30 - 80 GPa, 잔류응력 3 - 10 GPa 범위로 일반 경질 코팅 막 (AlTiN, TiSiCrN : 평균 3 GPa)에 비해 높고 산업적 활용이 가능한 0.5 - 1.5 um 두께 수준의 후막화가 힘들어 매우 우수한 절삭공구용 코팅 막 특성에도 불구하고 적용사례가 매우 적다. 따라서, 본 연구에서는 아크플라즈마 방식 (Filtered Cathode Vacuum Arc Plasma, FCVA)을 활용한 고경도/무수소 카본 코팅 막을 후막형태로 증착하여 비철금속가공용 절삭 공구류의 수명향상 기법을 제시하고자 한다. ta-C 코팅 막의 기초 공정개발 단계에서는 바이어스 전압, 공정시간을 달리하여 ta-C 코팅 막의 기계적 물성(경도: $50{\pm}3GPa$, 잔류응력: $6{\pm}1GPa$, 밀착력: 30N 이상 및 트라이볼로지 특성: 마찰계수 0.1 이하, 마멸량: $1.85{\times}10-14mm^3$)을 확보하여 절삭공구로의 공정실용화 적용검토를 실시하였다. ta-C 코팅 막은 (1) WC 공구 및 기존 상용품인 (2) TiAlN/TiN/WC 구조에 대해 증착을 실시하였으며 코팅 막의 두께 변화에 따른 실제 절삭환경에서의 내수명 관측을 진행하였다. 시험결과, ta-C/WC의 단일막 구조인 절삭공구의 경우, 실제 절삭환경에서 쉽게 박리가 발생하여 코팅 막으로서의 효과를 나타내지 못하였다. 이는, 기초 공정개발 단계에서의 밀착력 기준이 실제 환경과 부합하지 않는 것을 의미하며 추후 공정개선을 통해 극복하고자 한다. 반면에, 상용품인 (2) TiAlN/TiN/WC 구조의 절삭공구 대비 ta-C/TiAlN/TiN/WC 구조에서 내수명 증가는 약 2.5배 (기존 300회, 코팅 후 800회)로 증가하였으며 ta-C 코팅 막의 두께가 $0.6-0.8{\mu}m$일 때 최대치를 취한 후 감소하였다. 이를 통해, 절삭공구로의 ta-C 코팅 막 효과는 최외각 층의 두께 범위와 모재 강도보강을 할 수 있는 적절한 중간층 막 (TiN/TiAlN 층)이 혼합되어 나타난 것으로 사료되며 현재 산업계로의 적용을 위한 대량생산용 코팅장비의 개발 및 비용절감을 위한 공정개발이 진행 중이다.

  • PDF

CIGS 태양전지 용액전구체 paste공정 연구

  • Park, Myeong-Guk;An, Se-Jin;Yun, Jae-Ho;Kim, Dong-Hwan;Yun, Gyeong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • Chalcopyrite구조의CIS 화합물은 직접천이형 반도체로서 높은 광흡수 계수 ($1\times10^5\;cm^{-1}$)와 밴드갭 조절의 용이성 및 열적 안정성 등으로 인해 고효율 박막 태양전지용 광흡수층 재료로 많은 관심을 끌고 있다. CIS 계 물질에 속하는 $Cu(InGa)Se_2$ (CIGS) 태양전지의 경우 박막 태양전지 중 세계 최고 효율인 20%를 달성한 바 있으며, 이는 기존 다결정 웨이퍼형 실리콘 태양전지의 효율에 근접하는 수치이다. 그러나 이러한 우수한 효율에도 불구하고 박막 증착시 동시증발장치 혹은 스퍼터링장치와 같은 고가 진공장비를 사용하게 되면 공정단가가 높을 뿐만 아니라 사용되는 재료의 20-50%의 손실을 감수해야만 한다. 또한 대면적 Cell제작에 어려움이 있기 때문에 기술개발 이후의 상용화 단계를 고려할 때 광흡수층 박막 제조 공정단가를 획기적으로 낮출 수 있고 대면적화가 용이한 신 공정 개발이 필수적이다. 이러한 관점에서 비진공 코팅방법에 의한 CIS 광흡수층 제조 기술은 CIS 태양전지의 저가화 및 대면적화를 가능케 하는 차세대 기술로 인식되고 있고 최근 급속한 발전을 이루고 있는 미세 입자 합성, 제어 및 응용 기술에 부합하여 많은 세계 연구기관 및 기업체에서 활발히 연구를 진행하고 있다. 비진공 방식에 의한 CIS 광흡수층 제조 기술은 전구체 물질의 형태에 따라 크게 입자형 전구체를 사용하는 방법과 용액 전구체를 사용하는 방법으로 나눌 수 있다. 본 연구에서는 용액 전구체를 paste 공정으로 실험하였다. 이는 용액전구체 물질 제조가 입자형 전구체 제조에 비해 매우 간단하고, 전구체 물질 내 구성원소의 원자비를 쉽게 조절할 수 있다는 장점 및 사용효율이 높아 소량의 source로도 박막 제작이 가능해 공정 단가 절감에 큰 효과가 기대되기 때문이다. 실험에 사용 된 용액전구체는 $Cu(NO_3)$$InCl_3$, $Ga(NO_3)$를 Cu, In, Ga 출발 물질로 선정하여 이를 메탄올에 완전히 용해시켜 binder인 셀룰로오즈와 메탄올을 섞은 용액과 혼합하여 전구체 슬러리를 형성하였다. 이 슬러리를 paste공정으로 precursor막을 입히고 저온 건조 후 Se 분위기에서 열처리하여 CIGS박막을 얻을 수 있었다. 박막의 특성을 XRD, SEM, AES, TGA등으로 분석하였다.

  • PDF

Microstructures of Crystalline Silicon Thin Film using Silicon Nanoink (실리콘 나노잉크를 이용한 결정질 실리콘 박막의 미세구조)

  • Lee, Hyeon-Kyeong;Jeong, Ji-Young;Jang, Bo-Yun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.266-266
    • /
    • 2010
  • 실리콘 나노잉크를 이용한 프린팅 공정을 적용하여 결정질 실리콘 박막을 제조하였으며, 다양한 공정조건에 따른 박막의 특성을 연구하였다. 기존의 실리콘 박막형 제조 기술은 고가의 진공프로세스이므로, 비진공 프린팅 공정의 대체를 통하여 박막 태양전지의 제조원가를 획기적으로 절감할 수 있다. 실리콘 나노입자는 저온 플라즈마를 사용하여 합성하였으며, 스핀코팅 (spin coating), 드롭핑 (dropping), 딥핑 (dipping) 등의 프린팅 공정을 이용하여 단결정 실리콘 웨이퍼 위에 박막을 형성하였다. 사용된 실리콘 나노입자는 10 ~ 50 nm 의 크기와 단결정 구조를 갖는다. 이러한 실리콘 나노입자는 Propylene Glycol 용매에 분산시켜 하부기판에 프린팅 하였다. 이렇게 증착된 나노입자들은 $600{\sim}1000^{\circ}C$의 온도와 다양한 분위기에서 열처리되어 고밀도화 되었다. 제조된 실리콘 박막의 물성 분석은 SEM, EDX, 그리고 X-ray 회절 측정을 통하여 수행되었다.

  • PDF

전구체 박막 증착법을 이용한 CuInSe2 박막 합성 및 결정화 메커니즘 분석

  • Lee, Dong-Uk;Choe, Yeong-U;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.367-367
    • /
    • 2011
  • 태양전지에서 광흡수층으로 널리 쓰이는 CuInSe2은 전기적, 광학적 특성이 우수하고 20%대의 고효율을 기록하며 큰 관심을 받고 있다. 하지만 증발법 및 스퍼터링 등의 기존 진공, 고온 기반 공정 기술은 원천적인 공정비용 절감이 어렵고, 고가의 희귀원소인 In 등의 원료 활용도가 떨어져 실험실 수준에 머무르고 있다. 최근 공정 비용을 최소화와 원료 활용을 극대화를 통해 고효율 CIGS 박막형 태양전지를 제조하기 위해 비진공 방식의 전구체 박막 코팅 및 열처리를 통한 광흡수층 제조에 관한 연구가 활발히 진행되고 있으며, 본 연구는 doctor-blade coating을 이용하여 전구체 박막을 기판 위에 형성하고 열처리 온도에 따른 박막 물성 변화를 관찰함으로써 박막 형성 메커니즘을 밝히는데 주력하였다. 또한 합성된 박막의 전기적, 광학적 특성을 분석하여 태양전지 응용 가능성을 살펴보았다. 본 연구에서는 SEM, XRD, TGA 분석을 통해 Cu, In, Se 전구체들이 각각 binary phase, 즉, Cu2-xSe 및 In2Se3의 metal chalcogenide을 형성하고, 고온에서 서로 결합하여 CuInSe2로 결정화 되는 현상을 관찰하였다. 또한 합성된 CIS 박막은 근적외선 및 가시광 영역에서 높은 광흡수도를 보였으며, 전기적으로 Mo 전극과 ohmic contact을 이룸으로써 CIGS계 태양전지의 광흡수층으로의 적합성을 나타내었다.

  • PDF

ZnO 나노구조를 이용한 $CuInS_2$ Superstrate 태양전지 제조

  • Lee, Dong-Uk;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.665-665
    • /
    • 2013
  • 박막형 태양전지에서 광흡수층으로 널리 쓰이는 metal chalcogenide 화합물 중, CuInS2(CIS)은 전기적, 광학적 특성이 우수하여 널리 연구되고 있다. CIS계 태양전지 최근 동시 증발법을 이용하여 20.3%의 고효율을 기록한 바 있으나 기존 진공, 고온 기반 공정 기술은 초기 투자 비용이 높고, 고가의 희귀원소인 In 등의 원료 활용도가 떨어져 원가 절감에 있어 한계가 있다. 이에 따라 제조 비용 절감과 원료 사용 효율을 향상시키기 위해 비진공 방식을 이용한 광흡수 층 증착 공정에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 상온, 상압, 저온에서 합성이 가능한 CIS계 광흡수층을 전자 전달 및 빛 포집에 유리한 ZnO 나노구조와 응용함으로써 superstrate 구조의 박막형 태양전지를 구현하고 그 특성을 평가하였다. CIS 박막 태양전지에서 투명창층으로 쓰이는 ZnO 박막을 수열합성법으로 합성된 ZnO 나노로드 어레이로 대체하여 빛 산란 효과를 줄이고, 전하 수집 및 이동 효과를 극대화하였다. 또한 CIS 광흡수층은amine계 용매와 금속염 및 thiourea를 조합하여 저온에서 코팅 후 건조시켜 박막을 제조하였다. 각 요소 박막들의 물성을SEM, XRD, UV-transmittance 분석을 통해 살펴보았으며, 소면적 태양전지 제작을 통해 박막 구조 대비 30배 이상의 광변환효율(최고효율 3.30%)을 기록하였다.

  • PDF