• 제목/요약/키워드: 비지배 정렬 유전 알고리즘

검색결과 2건 처리시간 0.269초

비지배 정렬 유전 알고리즘-II를 이용한 145 kV급 축소형 경사기능성 적용 스페이서의 유전율 분포 최적화 방법론 (Methodology for Optimizing Permittivity Distribution of 145 kV Miniaturized Functional Graded Spacer Using Non-Dominated Sorting Genetic Algorithm-II)

  • 노요한;김승현;정종훈;조한구
    • 한국전기전자재료학회논문지
    • /
    • 제33권3호
    • /
    • pp.225-230
    • /
    • 2020
  • Recently, with the miniaturization of GIS, there is a need for the miniaturization of spacers as accessories. Miniaturized spacers make it difficult to secure adequate insulation distances, resulting in a more concentrated electric field at the triple junction of high-voltage (HV) conductor-insulator (spacer)-insulation gas (SF6), which is a weakness in GIS. Therefore, by introducing a new concept design technology, functionally graded material (FGM), which is recently applied to various materials and parts industries, three-dimensional control of the dielectric constant distribution in a spacer can be expected to alleviate triple-junction electric field occupancy and improve insulation performance. In this study, we propose an optimized model using NSGA-II to optimize the permittivity distribution of FGM applied spacer.

공군기지의 C-UAS 센서 배치를 위한 다목적 최적화 모델 (Multi-objective Optimization Model for C-UAS Sensor Placement in Air Base)

  • 신민철;최선주;박종호;오상윤;정찬기
    • 한국군사과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.125-134
    • /
    • 2022
  • Recently, there are an increased the number of reports on the misuse or malicious use of an UAS. Thus, many researchers are studying on defense schemes for UAS by developing or improving C-UAS sensor technology. However, the wrong placement of sensors may lead to a defense failure since the proper placement of sensors is critical for UAS defense. In this study, a multi-object optimization model for C-UAS sensor placement in an air base is proposed. To address the issue, we define two objective functions: the intersection ratio of interested area and the minimum detection range and try to find the optimized placement of sensors that maximizes the two functions. C-UAS placement model is designed using a NSGA-II algorithm, and through experiments and analyses the possibility of its optimization is verified.