• 제목/요약/키워드: 비지도 학습.

검색결과 225건 처리시간 0.066초

Unsupervised feature selection using orthogonal decomposition and low-rank approximation

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • 제27권5호
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a novel unsupervised feature selection method. Conventional unsupervised feature selection method defines virtual label and uses a regression analysis that projects the given data to this label. However, since virtual labels are generated from data, they can be formed similarly in the space. Thus, in the conventional method, the features can be selected in only restricted space. To solve this problem, in this paper, features are selected using orthogonal projections and low-rank approximations. To solve this problem, in this paper, a virtual label is projected to orthogonal space and the given data set is also projected to this space. Through this process, effective features can be selected. In addition, projection matrix is restricted low-rank to allow more effective features to be selected in low-dimensional space. To achieve these objectives, a cost function is designed and an efficient optimization method is proposed. Experimental results for six data sets demonstrate that the proposed method outperforms existing conventional unsupervised feature selection methods in most cases.

Unsupervised Korean Word Sense Disambiguation using CoreNet (코어넷을 활용한 비지도 한국어 어의 중의성 해소)

  • Han, Kijong;Nam, Sangha;Kim, Jiseong;Hahm, YoungGyun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.153-158
    • /
    • 2017
  • 본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.

  • PDF

Unsupervised Korean Word Sense Disambiguation using CoreNet (코어넷을 활용한 비지도 한국어 어의 중의성 해소)

  • Han, Kijong;Nam, Sangha;Kim, Jiseong;Hahm, YoungGyun;Choi, Key-Sun
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.153-158
    • /
    • 2017
  • 본 논문은 한국어 어휘 의미망인 코어넷(CoreNet)을 활용한 비지도학습 방식의 한국어 어의 중의성 해소(Word Sense Dsiambiguation)에 대한 연구이다. 어의 중의성 해소의 실질적인 응용을 위해서는 합리적인 수준으로 의미 후보를 나눌 필요성이 있다. 이를 위해 동형이의어와 코어넷의 개념체계를 활용하여 의미 후보를 나누어서 진행하였으며 이렇게 나눈 것이 실제 활용에서 의미가 있음을 실험을 통해 보였다. 접근 방식으로는 문맥 속에서 서로 영향을 미치는 어휘의 의미들을 동시에 고려하여 중의성 해소를 할 수 있도록 마코프랜덤필드와 의존구조 분석을 바탕으로 한 지식 기반 모델을 사용하였다. 이 과정에서도 코어넷의 개념체계를 활용하였다. 이 방식을 통해 임의의 모든 어휘에 대해 중의성 해소를 하도록 직접 구축한 데이터 셋에 대하여 80.9%의 정확도를 보였다.

  • PDF

Standard Industrial Classification in Short Sentence Based on Machine Learning Approach (기계학습 기반 단문에서의 문장 분류 방법을 이용한 한국표준산업분류)

  • Oh, Kyo-Joong;Choi, Ho-Jin;An, Hweongak
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.394-398
    • /
    • 2020
  • 산업/직업분류 자동코딩시스템은 고용조사 등을 함에 있어 사업체 정보, 업무, 직급, 부서명 등 사용자의 다양한 입력을 표준 산업/직업분류에 맞춰 코드 정보를 제공해주는 시스템이다. 입력 데이터로부터 비지도학습 기반의 색인어 추출 모델을 학습하고, 부분단어 임베딩이 적용된 색인어 임베딩 모델을 통해 입력 벡터를 추출 후, 출력 분류 코드를 인코딩하여 지도학습 모델에서 학습하는 방법을 적용하였다. 기존 시스템의 분류 결과 데이터를 통해 대, 중, 소, 세분류에서 높은 정확도의 모델을 구축할 수 있으며, 기계학습 기술의 적용이 가능한 시스템임을 알 수 있다.

  • PDF

A Study on the Work Type of Machine Learning Administrative Service in Metropolitan Government (광역자치단체의 기계학습 행정서비스 업무유형에 관한 연구 -서울시를 중심으로-)

  • Ha, Chung-Yeol;Jung, Jin-Teak
    • Journal of Digital Convergence
    • /
    • 제18권12호
    • /
    • pp.29-36
    • /
    • 2020
  • The background of this study is that machine learning administrative services are recently attracting attention as a major policy tool for non-face-to-face administrative services in the post-corona era. This study investigated the types of work expected to be effective when introducing machine learning administrative services for Seoul Metropolitan Government officials who are piloting machine learning administrative services. The research method is a machine that can be introduced by organizational unit by distributing and collecting questionnaires for Seoul administrative organizations that have performed machine learning-based administrative services for one month in July 2020 targeting Seoul public officials using machine learning-based administrative services. By analyzing the learning administration service and application service, the business characteristics of each machine learning administration service type such as supervised learning work type, unsupervised learning work type, and reinforced learning work type were analyzed. As a result of the research analysis, it was found that there were significant differences in the characteristics of administrative tasks by supervised and unsupervised learning areas. In particular, it was found that the reinforcement learning domain contains the most appropriate business characteristics for machine learning administrative services. Implications were drawn. The results of this study can be provided as a reference material to practitioners who want to introduce machine learning administration services, and can be used as basic data for research to researchers who want to study machine learning administration services in the future.

Procedure for monitoring autocorrelated processes using LSTM Autoencoder (LSTM Autoencoder를 이용한 자기상관 공정의 모니터링 절차)

  • Pyoungjin Ji;Jaeheon Lee
    • The Korean Journal of Applied Statistics
    • /
    • 제37권2호
    • /
    • pp.191-207
    • /
    • 2024
  • Many studies have been conducted to quickly detect out-of-control situations in autocorrelated processes. The most traditionally used method is a residual control chart, which uses residuals calculated from a fitted time series model. However, many procedures for monitoring autocorrelated processes using statistical learning methods have recently been proposed. In this paper, we propose a monitoring procedure using the latent vector of LSTM Autoencoder, a deep learning-based unsupervised learning method. We compare the performance of this procedure with the LSTM Autoencoder procedure based on the reconstruction error, the RNN classification procedure, and the residual charting procedure through simulation studies. Simulation results show that the performance of the proposed procedure and the RNN classification procedure are similar, but the proposed procedure has the advantage of being useful in processes where sufficient out-of-control data cannot be obtained, because it does not require out-of-control data for training.

Cross-Lingual Transfer of Pretrained Transformers to Resource-Scarce Languages (사전 학습된 Transformer 언어 모델의 이종 언어 간 전이 학습을 통한 자원 희소성 문제 극복)

  • Lee, Chanhee;Park, Chanjun;Kim, Gyeongmin;Oh, Dongsuk;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.135-140
    • /
    • 2020
  • 사전 학습된 Transformer 기반 언어 모델은 자연어처리 시스템에 적용되었을 시 광범위한 사례에서 큰 폭의 성능 향상을 보여준다. 여기서 사전 학습에 사용되는 언어 모델링 태스크는 비지도 학습에 속하는 기술이기 때문에 상대적으로 데이터의 확보가 쉬운 편이다. 하지만 몇 종의 주류 언어를 제외한 대부분 언어는 활용할 수 있는 언어 자원 자체가 희소하며, 따라서 이러한 사전 학습 기술의 혜택도 누리기 어렵다. 본 연구에서는 이와 같은 상황에서 발생할 수 있는 자원 희소성 문제를 극복하기 위해 이종 언어 간 전이 학습을 이용하는 방법을 제안한다. 본 방법은 언어 자원이 풍부한 언어에서 학습된 Transformer 기반 언어 모델에서 얻은 파라미터 중 재활용 가능한 부분을 이용하여 목표 언어의 모델을 초기화한 후 학습을 진행한다. 또한, 기존 언어와 목표 언어의 차이를 학습하는 역할을 하는 적응층들을 추가하여 이종 언어 간 전이 학습을 돕는다. 제안된 방법을 언어 자원이 희귀한 상황에 대하여 실험해본 결과, 전이 학습을 사용하지 않은 기준 모델 대비 perplexity와 단어 예측의 정확도가 큰 폭으로 향상됨을 확인하였다.

  • PDF

Supervised Learning for Sentence Embedding Model using BERT (BERT를 이용한 지도학습 기반 문장 임베딩 모델)

  • Choi, Gihyeon;Kim, Sihyung;Kim, Harksoo;Kim, Kwanwoo;An, Jaeyoung;Choi, Doojin
    • Annual Conference on Human and Language Technology
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.225-228
    • /
    • 2019
  • 문장 임베딩은 문장의 의미를 잘 표현 할 수 있도록 해당 문장을 벡터화 하는 작업을 말한다. 문장 단위 입력을 사용하는 자연언어처리 작업에서 문장 임베딩은 매우 중요한 부분을 차지한다. 두 문장 사이의 의미관계를 추론하는 자연어 추론 작업을 통하여 학습한 문장 임베딩 모델이 기존의 비지도 학습 기반 문장 임베딩 모델 보다 높은 성능을 보이고 있다. 따라서 본 논문에서는 문장 임베딩 성능을 높이기 위하여 사전 학습된 BERT 모델을 이용한 문장 임베딩 기반 자연어 추론 모델을 제안한다. 문장 임베딩에 대한 성능 척도로 자연어 추론 성능을 사용하였으며 SNLI(Standford Natural Language Inference) 말뭉치를 사용하여 실험한 결과 제안 모델은 0.8603의 정확도를 보였다.

  • PDF

Data Augmentation Strategy based on Token Cut-off for Using Triplet Loss in Unsupervised Contrastive Learning (비지도 대조 학습에서 삼중항 손실 함수 도입을 위한 토큰 컷오프 기반 데이터 증강 기법)

  • Myeongsoo Han;Yoo Hyun Jeong;Dong-Kyu Chae
    • Annual Conference of KIPS
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.618-620
    • /
    • 2023
  • 최근 자연어처리 분야에서 의미론적 유사성을 반영하기 위한 대조 학습 (contrastive learning) 관련 연구가 활발히 이뤄지고 있다. 이러한 대조 학습의 핵심은 의미론적으로 가까워져야 하는 쌍과 멀어져야 하는 쌍을 잘 구축하는 것이지만, 기존의 손실 함수는 문장의 상대적인 유사성을 풍부하게 반영하는데 한계가 있다. 이를 해결하기 위해, 이전 연구에서는 삼중 항 손실 함수 (triplet loss)를 도입하였으며, 본 논문에서는 이러한 삼중 항을 구성하기 위해 대조 학습에서의 효과적인 토큰 컷오프(cutoff) 데이터 증강 기법을 제안한다. BERT, RoBERTa 등 널리 활용되는 언어 모델을 이용한 실험을 통해 제안하는 방법의 우수한 성능을 보인다.

Generalized wheat head Detection Model Based on CutMix Algorithm (CutMix 알고리즘 기반의 일반화된 밀 머리 검출 모델)

  • Juwon Yeo;Wonjun Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.73-75
    • /
    • 2024
  • 본 논문에서는 밀 수확량을 증가시키기 위한 일반화된 검출 모델을 제안한다. 일반화 성능을 높이기 위해 CutMix 알고리즘으로 데이터를 증식시켰고, 라벨링 되지 않은 데이터를 최대한 활용하기 위해 Fast R-CNN 기반 Pseudo labeling을 사용하였다. 학습의 정확성과 효율성을 높이기 위해 사전에 훈련된 EfficientDet 모델로 학습하였으며, OOF를 이용하여 검증하였다. 최신 객체 검출 모델과 IoU(Intersection over Union)를 이용한 성능 평가 결과, 제안된 모델이 가장 높은 성능을 보이는 것을 확인하였다.

  • PDF