• Title/Summary/Keyword: 비지도 학습.

Search Result 225, Processing Time 0.023 seconds

Forecasting the Precipitation of the Next Day Using Deep Learning (딥러닝 기법을 이용한 내일강수 예측)

  • Ha, Ji-Hun;Lee, Yong Hee;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • For accurate precipitation forecasts the choice of weather factors and prediction method is very important. Recently, machine learning has been widely used for forecasting precipitation, and artificial neural network, one of machine learning techniques, showed good performance. In this paper, we suggest a new method for forecasting precipitation using DBN, one of deep learning techniques. DBN has an advantage that initial weights are set by unsupervised learning, so this compensates for the defects of artificial neural networks. We used past precipitation, temperature, and the parameters of the sun and moon's motion as features for forecasting precipitation. The dataset consists of observation data which had been measured for 40 years from AWS in Seoul. Experiments were based on 8-fold cross validation. As a result of estimation, we got probabilities of test dataset, so threshold was used for the decision of precipitation. CSI and Bias were used for indicating the precision of precipitation. Our experimental results showed that DBN performed better than MLP.

Novel Deep Learning-Based Profiling Side-Channel Analysis on the Different-Device (이종 디바이스 환경에 효과적인 신규 딥러닝 기반 프로파일링 부채널 분석)

  • Woo, Ji-Eun;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.987-995
    • /
    • 2022
  • Deep learning-based profiling side-channel analysis has been many proposed. Deep learning-based profiling analysis is a technique that trains the relationship between the side-channel information and the intermediate values to the neural network, then finds the secret key of the attack device using the trained neural network. Recently, cross-device profiling side channel analysis was proposed to consider the realistic deep learning-based profiling side channel analysis scenarios. However, it has a limitation in that attack performance is lowered if the profiling device and the attack device have not the same chips. In this paper, an environment in which the profiling device and the attack device have not the same chips is defined as the different-device, and a novel deep learning-based profiling side-channel analysis on different-device is proposed. Also, MCNN is used to well extract the characteristic of each data. We experimented with the six different boards to verify the attack performance of the proposed method; as a result, when the proposed method was used, the minimum number of attack traces was reduced by up to 25 times compared to without the proposed method.

Performance Comparison of Anomaly Detection Algorithms: in terms of Anomaly Type and Data Properties (이상탐지 알고리즘 성능 비교: 이상치 유형과 데이터 속성 관점에서)

  • Jaeung Kim;Seung Ryul Jeong;Namgyu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.229-247
    • /
    • 2023
  • With the increasing emphasis on anomaly detection across various fields, diverse anomaly detection algorithms have been developed for various data types and anomaly patterns. However, the performance of anomaly detection algorithms is generally evaluated on publicly available datasets, and the specific performance of each algorithm on anomalies of particular types remains unexplored. Consequently, selecting an appropriate anomaly detection algorithm for specific analytical contexts poses challenges. Therefore, in this paper, we aim to investigate the types of anomalies and various attributes of data. Subsequently, we intend to propose approaches that can assist in the selection of appropriate anomaly detection algorithms based on this understanding. Specifically, this study compares the performance of anomaly detection algorithms for four types of anomalies: local, global, contextual, and clustered anomalies. Through further analysis, the impact of label availability, data quantity, and dimensionality on algorithm performance is examined. Experimental results demonstrate that the most effective algorithm varies depending on the type of anomaly, and certain algorithms exhibit stable performance even in the absence of anomaly-specific information. Furthermore, in some types of anomalies, the performance of unsupervised anomaly detection algorithms was observed to be lower than that of supervised and semi-supervised learning algorithms. Lastly, we found that the performance of most algorithms is more strongly influenced by the type of anomalies when the data quantity is relatively scarce or abundant. Additionally, in cases of higher dimensionality, it was noted that excellent performance was exhibited in detecting local and global anomalies, while lower performance was observed for clustered anomaly types.

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

Use of Minimal Spanning Trees on Self-Organizing Maps (자기조직도에서 최소생성나무의 활용)

  • Jang, Yoo-Jin;Huh, Myung-Hoe;Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.415-424
    • /
    • 2009
  • As one of the unsupervised learning neural network methods, self-organizing maps(SOM) are applied to various fields. It reduces the dimension of multidimensional data by representing observations on the low dimensional manifold. On the other hand, the minimal spanning tree(MST) of a graph that achieves the most economic subset of edges connecting all components by a single open loop. In this study, we apply the MST technique to SOM with subnodes. We propose SOM's with embedded MST and a distance measure for optimum choice of the size and shape of the map. We demonstrate the method with Fisher's Iris data and a real gene expression data. Simulated data sets are also analyzed to check the validity of the proposed method.

A Study on the Interconnection between National Disaster Management System and Private Disaster Prevention IT Technology through Application (국가재난관리 시스템과 민간 방재IT기술의 지능정보기술 적용 사례고찰을 통한 상호 연계에 관한 연구)

  • Kim, Jaepyo;Kim, Seungcheon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.15-22
    • /
    • 2020
  • In order to strengthen the disaster prevention phase and the management of social disasters, we will examine the plan of To-Be disaster management system interconnected by using intelligent information technologies such as IoT, Cloud, Big Data, Mobile and AI. The disaster management system can be upgraded by constructing an intelligent infrastructure based on Big Data analysis of the disaster signals before and after the disasters generated by private mobile and IoT. Big Data of disaster Signals can be customized to users in a timely manner through AI methodologies of supervised and unsupervised learning and reinforcement training. In the long term, it is expected that not only will the capacity of disaster response be improved, but the management ability centering on prevention will be enhanced as well.

Improving The Performance of Triple Generation Based on Distant Supervision By Using Semantic Similarity (의미 유사도를 활용한 Distant Supervision 기반의 트리플 생성 성능 향상)

  • Yoon, Hee-Geun;Choi, Su Jeong;Park, Seong-Bae
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.653-661
    • /
    • 2016
  • The existing pattern-based triple generation systems based on distant supervision could be flawed by assumption of distant supervision. For resolving flaw from an excessive assumption, statistics information has been commonly used for measuring confidence of patterns in previous studies. In this study, we proposed a more accurate confidence measure based on semantic similarity between patterns and properties. Unsupervised learning method, word embedding and WordNet-based similarity measures were adopted for learning meaning of words and measuring semantic similarity. For resolving language discordance between patterns and properties, we adopted CCA for aligning bilingual word embedding models and a translation-based approach for a WordNet-based measure. The results of our experiments indicated that the accuracy of triples that are filtered by the semantic similarity-based confidence measure was 16% higher than that of the statistics-based approach. These results suggested that semantic similarity-based confidence measure is more effective than statistics-based approach for generating high quality triples.

EEG Signal Classification based on SVM Algorithm (SVM(Support Vector Machine) 알고리즘 기반의 EEG(Electroencephalogram) 신호 분류)

  • Rhee, Sang-Won;Cho, Han-Jin;Chae, Cheol-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2020
  • In this paper, we measured the user's EEG signal and classified the EEG signal using the Support Vector Machine algorithm and measured the accuracy of the signal. An experiment was conducted to measure the user's EEG signals by separating men and women, and a single channel EEG device was used for EEG signal measurements. The results of measuring users' EEG signals using EEG devices were analyzed using R. In addition, data in the study was predicted using a 80:20 ratio between training data and test data by applying a combination of specific vectors with the highest classifying performance of the SVM, and thus the predicted accuracy of 93.2% of the recognition rate. This paper suggested that the user's EEG signal could be recognized at about 93.2 percent, and that it can be performed only by simple linear classification of the SVM algorithm, which can be used variously for biometrics using EEG signals.

Fault Detection in LDPE Process using Machine Learning Techniques (머신러닝 기법을 활용한 LDPE 공정의 이상 감지)

  • Lee, Changsong;Lee, Kyu-Hwang;Lee, Hokyung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.224-229
    • /
    • 2020
  • We propose a machine learning-based method for proactively detecting faults in LDPE processes and predicting equipment lifespan. It is important to detect and prevent unexpected faults in chemical processes in order to maximize safety and productivity. Since LDPE process is a high-pressure process up to 3,000 kg/㎠g or more, once ESD occurs, it can result in productivity loss due to increased maintenance periods. By collecting key variables operation data of the process and using unsupervised machine leaning methods, we developed a fault detection model which detected 4 ESDs 2.4 days prior to the occurrence. In addition, it was confirmed that the life expectancy of a hyper compressor can be predicted by using the physically significant key variables.

Extracting Korean-English Parallel Sentences from Wikipedia (위키피디아로부터 한국어-영어 병렬 문장 추출)

  • Kim, Sung-Hyun;Yang, Seon;Ko, Youngjoong
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.580-585
    • /
    • 2014
  • This paper conducts a variety of experiments for "the extraction of Korean parallel sentences using Wikipedia data". We refer to various methods that were previously proposed for other languages. We use two approaches. The first one is to use translation probabilities that are extracted from the existing resources such as Sejong parallel corpus, and the second one is to use dictionaries such as Wiki dictionary consisting of Wikipedia titles and MRDs (machine readable dictionaries). Experimental results show that we obtained a significant improvement in system using Wikipedia data in comparison to one using only the existing resources. We finally achieve an outstanding performance, an F1-score of 57.6%. We additionally conduct experiments using a topic model. Although this experiment shows a relatively lower performance, an F1-score of 51.6%, it is expected to be worthy of further studies.