Large-scaled information extraction plays an important role in advanced information retrieval as well as question answering and summarization. Information extraction can be defined as a process of converting unstructured documents into formalized, tabular information, which consists of named-entity recognition, terminology extraction, coreference resolution and relation extraction. Since all the elementary technologies have been studied independently so far, it is not trivial to integrate all the necessary processes of information extraction due to the diversity of their input/output formation approaches and operating environments. As a result, it is difficult to handle scientific documents to extract both named-entities and technical terms at once. In this study, we define scientific as a set of 10 types of named entities and technical terminologies in a biomedical domain. in order to automatically extract these entities from scientific documents at once, we develop a framework for scientific core entity extraction which embraces all the pivotal language processors, named-entity recognizer, co-reference resolver and terminology extractor. Each module of the integrated system has been evaluated with various corpus as well as KEEC 2009. The system will be utilized for various information service areas such as information retrieval, question-answering(Q&A), document indexing, dictionary construction, and so on.
In case of applying BIM method to the civil engineering of irregularly shaped structure, BIM method is recognized to have relatively high construction productivity. In this paper, we developed quantity calculation algorithms applying BIM method to NATM tunnel construction method and implemented BIM based 3D-BIM Modeling Quantity Calculation. The results showed that BIM-based method has high reliabilty in structure work in which errors occurred only in the range between 0.00% and -1.45%. On the other hand, BIM method applied to earth work showed great error range of -19.78% to 35.30%. So the benefit and applicability of BIM method in civil engineering were confirmed. In addition, routine method for the quantity of earth work has negligible error as in the case of structure work. But, rock type's quantity calculation showed significant errors so that the reliability of 2D-based volume calculation is problematic. It may thus be concluded that 3D-BIM is more reliable than the routine method in estimating the quantity of earth work. Considering the reliability and merits in the stage of its design, construction and maintenance levels, the application of BIM to civil engineering works is recommended.
Park, Sung Hwan;Jang, Soo Jeong;Lee, Hyun Ji;Lee, Gyoon-Woo;Lee, Jun Kyu;Kim, Yong Jung;Kim, Jin-Soo;Heu, Min Soo
Korean Journal of Food Science and Technology
/
v.47
no.3
/
pp.321-327
/
2015
The optimal condition for preparation of powdered calcium acetate (LCCA) which has high solubility, from calcined powder (LCCP) of the littleneck clam shell by response surface methodology (RSM) was examined. Increased molar ratio of LCCP led to reduced solubility, yield, color values, and overall quality. The critical values of multiple response optimization of independent variables were 2.57 M of acetic acid and 1.57 M of LCCP. The actual values (pH 7.0, 96.1% for solubility, and 220.9% for yield) under the optimized condition were similar to the predicted values. LCCA showed strong buffering capacity between pH 4.89 and 4.92 on addition of ~2 mL of 1 N HCl. The calcium content and solubility of LCCA were 21.9-23.0 g/100 g and 96.1-100.1%, respectively. The FT-IR and XRD patterns of LCCA were identified as calcium acetate monohydrate, and FESEM images revealed an irregular and rod-like microstructure.
In today's data-driven society, we've been hearing a great deal about the power of Big Data over the last couple of years. At the same time, it has become the most important issue that the problems is caused by the data collection, management and utilization. Moreover, Big Data has a wide applications ranging from situation awareness, decision-making to the area to enable for the foreseeable future with man-made and analysis of data. It is necessary to process data into meaningful information given that the huge amount of structured and unstructured data being created in the private and the public sector, even in disaster management. This data should be public and private sector at the same time for the appropriate linkage analysis for effective disaster management. In this paper, we conducted a literature review and case study efficient Big Data to derive the revitalization of national disaster management. The study obtained data on the role and responsibility of the public sector and the private sector to leverage Big Data for promotion of national disaster management plan. Both public and private sectors should promote common development challenges related to the openness and sharing of Big Data, technology and expansion of infrastructure, legal and institutional maintenance. The implications of the finding were discussed.
Do, Yuno;Ko, Eui-Jeong;Kim, Young-Min;Kim, Hyo-Gyeom;Joo, Gea-Jae;Kim, Ji Yoon;Kim, Hyun-Woo
Korean Journal of Ecology and Environment
/
v.48
no.3
/
pp.195-202
/
2015
We identified research trends for freshwater exotic species in South Korea using text mining methods in conjunction with bibliometric analysis. We searched scientific and common names of freshwater exotic species as searching keywords including 1 mammal species, 3 amphibian-reptile species, 11 fish species, 2 aquatic plant species. A total of 245 articles including research articles and abstracts of conference proceedings published by 56 academic societies and institutes were collected from scientific article databases. The search keywords used were the common names for the exotic species. The $20^{th}$ century (1900's) saw the number of articles increase; however, during the early $21^{st}$ century (2000's) the number of published articles decreased slowly. The number of articles focusing on physiological and embryological research was significantly greater than taxonomic and ecological studies. Rainbow trout and Nile tilapia were the main research topic, specifically physiological and embryological research associated with the aquaculture of these species. Ecological studies were only conducted on the distribution and effect of large-mouth bass and nutria. The ecological risk associated with freshwater exotic species has been expressed yet the scientific information might be insufficient to remove doubt about ecological issues as expressed by interested by individuals and policy makers due to bias in research topics with respect to freshwater exotic species. The research topics of freshwater exotic species would have to diversify to effectively manage freshwater exotic species.
In the era of the 4th Industrial Revolution, artificial intelligence (AI) has become one of the core technologies in terms of the business strategy among information technology companies. Both international and domestic major portal companies are launching AI search services. These AI search services utilize voice, images, and other unstructured data to provide different experiences from existing text-based search services. An unfamiliar experience is a factor that can hinder the usability of the service. Therefore, the usability testing of the AI search services is necessary. This study examines the usability of the AI search service on the Naver App 8.9.3 beta version by comparing it with the search services of the current Naver App and targets 30 people in their 20s and 30s, who have experience using Naver apps. The usability of Smart Lens, Smart Voice, Smart Around, and AiRS, which are the Naver App beta versions of their artificial intelligence search service, is evaluated and statistically significant usability changes are revealed. Smart Lens, Smart Voice, and Smart Around exhibited positive changes, whereas AiRS exhibited negative changes in terms of usability. This study evaluates the change in usability according to the application of the artificial intelligence search services and investigates the correlation between the evaluation factors. The obtained data are expected to be useful for the usability evaluation of services that use AI.
The performance of natural language processing is rapidly improving due to the recent development and application of machine learning and deep learning technologies, and as a result, the field of application is expanding. In particular, as the demand for analysis on unstructured text data increases, interest in NLP(Natural Language Processing) is also increasing. However, due to the complexity and difficulty of the natural language preprocessing process and machine learning and deep learning theories, there are still high barriers to the use of natural language processing. In this paper, for an overall understanding of NLP, by examining the main fields of NLP that are currently being actively researched and the current state of major technologies centered on machine learning and deep learning, We want to provide a foundation to understand and utilize NLP more easily. Therefore, we investigated the change of NLP in AI(artificial intelligence) through the changes of the taxonomy of AI technology. The main areas of NLP which consists of language model, text classification, text generation, document summarization, question answering and machine translation were explained with state of the art deep learning models. In addition, major deep learning models utilized in NLP were explained, and data sets and evaluation measures for performance evaluation were summarized. We hope researchers who want to utilize NLP for various purposes in their field be able to understand the overall technical status and the main technologies of NLP through this paper.
Journal of the Korea Institute of Building Construction
/
v.22
no.3
/
pp.281-291
/
2022
This study attempts to use big data to determine the indicators necessary for a fire risk assessment of buildings. Because most of the causes affecting the fire risk of buildings are fixed as indicators considering only the building itself, previously only limited and subjective assessment has been performed. Therefore, if various internal and external indicators can be considered using big data, effective measures can be taken to reduce the fire risk of buildings. To collect the data necessary to determine indicators, a query language was first selected, and professional literature was collected in the form of unstructured data using a web crawling technique. To collect the words in the literature, pre-processing was performed such as user dictionary registration, duplicate literature, and stopwords. Then, through a review of previous research, words were classified into four components, and representative keywords related to risk were selected from each component. Risk-related indicators were collected through analysis of related words of representative keywords. By examining the indicators according to their selection criteria, 20 indicators could be determined. This research methodology indicates the applicability of big data analysis for establishing measures to reduce fire risk in buildings, and the determined risk indicators can be used as reference materials for assessment.
Shin, Woo Yong;Bang, Hae In;Kim, Jung-Ah;Kim, Jieun;Park, Rojin
Korean Journal of Clinical Laboratory Science
/
v.54
no.1
/
pp.68-72
/
2022
Angioimmunoblastic T-cell lymphoma (AITL) is a lymphoproliferative disorder of mature T follicular helper cells. Atypical lymphoid cells were observed in the bone marrow of an 80-year-old woman, and the flow cytometric determined immunophenotypes of B-cells were unusual, that is, CD19+, CD20-, and CD22- with lambda light chain restriction. Initially, we suspected BM involvement of B-cell lymphoma based on the presence of abnormal B-cells. However, the patient was diagnosed with AITL involving BM. A re-analysis of flow cytometric immunophenotyping revealed a minor, aberrant T-cell population, and the lambda light chain restriction observed by surface staining was considered non-specific binding. This case demonstrates B-cells in patients with EBV-positive T-cell lymphoma may exhibit immunophenotypes resembling those of plasma cells, and that proliferation of abnormal B-cells or plasma cells could also potentially mask underlying T-cell lymphoma. A more integrated approach is required for accurate diagnosis.
KSCE Journal of Civil and Environmental Engineering Research
/
v.43
no.6
/
pp.841-849
/
2023
Construction projects have risks due to various factors such as construction delays and construction accidents. Based on these construction risks, the method of calculating the construction period of the construction project is mainly made by subjective judgment that relies on supervisor experience. In addition, unreasonable shortening construction to meet construction project schedules delayed by construction delays and construction disasters causes negative consequences such as poor construction, and economic losses are caused by the absence of infrastructure due to delayed schedules. Data-based scientific approaches and statistical analysis are needed to solve the risks of such construction projects. Data collected in actual construction projects is stored in unstructured text, so to apply data-based risks, data pre-processing involves a lot of manpower and cost, so basic data through a data classification model using text mining is required. Therefore, in this study, a document-based data generation classification model for risk management was developed through a data classification model based on SVM (Support Vector Machine) by collecting construction project documents and utilizing text mining. Through quantitative analysis through future research results, it is expected that risk management will be possible by being used as efficient and objective basic data for construction project process management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.