• Title/Summary/Keyword: 비정형분석

Search Result 484, Processing Time 0.027 seconds

A Study on the Finding of Promising Export Items in Defense industry for Export Market Expansion-Focusing on Text Mining Analysis-

  • Yeo, Seoyoon;Jeong, Jong Hee;Kim, Seong Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.235-243
    • /
    • 2022
  • This paper aims to find promising export items for market expansion of defense export items. Germany, the UK, and France were selected as export target countries to obtain unstructured forecast data on weapons system acquisition plans for the next ten years by each country. Using the TF-IDF in text mining analysis, keywords that appeared frequently in data from three countries were derived. As a result of this paper, keywords for each country's major acquisition projects drawing. However, most of the derived keywords were related to mainstay weapon systems produced by domestic defense companies in each country. To discover promising export items from text mining, we proposed that the drawn keywords are distinguished as similar weapon systems. In addition, we assort the weapon systems that the three countries will get a plan to acquire commonly. As a result of this paper, it can be seen that the current promising export item is a weapon system related to the information system. Prioritizing overseas demands using key words can set clear market entry goals. In the case of domestic companies based on needs, it is possible to establish a specific entry strategy. Relevant organizations also can provide customized marketing support.

Fashion attribute-based mixed reality visualization service (패션 속성기반 혼합현실 시각화 서비스)

  • Yoo, Yongmin;Lee, Kyounguk;Kim, Kyungsun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.2-5
    • /
    • 2022
  • With the advent of deep learning and the rapid development of ICT (Information and Communication Technology), research using artificial intelligence is being actively conducted in various fields of society such as politics, economy, and culture and so on. Deep learning-based artificial intelligence technology is subdivided into various domains such as natural language processing, image processing, speech processing, and recommendation system. In particular, as the industry is advanced, the need for a recommendation system that analyzes market trends and individual characteristics and recommends them to consumers is increasingly required. In line with these technological developments, this paper extracts and classifies attribute information from structured or unstructured text and image big data through deep learning-based technology development of 'language processing intelligence' and 'image processing intelligence', and We propose an artificial intelligence-based 'customized fashion advisor' service integration system that analyzes trends and new materials, discovers 'market-consumer' insights through consumer taste analysis, and can recommend style, virtual fitting, and design support.

  • PDF

A Study on the Introduction of Professional Learning Communities for Continuing Education of Librarians (사서 계속교육을 위한 전문가학습공동체 도입에 관한 연구)

  • Ji Hei Kang;Byoung-Moon So;Youngmi Jung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.1
    • /
    • pp.181-198
    • /
    • 2024
  • As the teaching and learning paradigm shifts, the demand for informal learning is increasing. In this study, we reviewed related literature and analyzed cases of operating professional learning communities in order to apply professional learning communities to librarianship education and training programs. Seven operational cases of professional learning communities, both domestic and foreign, within the field of librarianship and other fields were selected. The organizational structure, operational format and method, learning content, and support systems were analyzed. Through this analysis, the concept of a librarian learning community was defined, and implications for organizing and operating a librarian learning community were derived from the spontaneity and multi-layeredness of composition, diversity of learning community operation formats, and fieldality of learning content. As a support system for the smooth operation and activation of the librarian learning communities continuity of program operation by the operating organization, support and cooperation from affiliated organizations, education and training programs, platform establishment and operation, and dissemination and feedback of results for activation were presented.

Multi-Label Classification for Corporate Review Text: A Local Grammar Approach (머신러닝 기반의 기업 리뷰 다중 분류: 부분 문법 적용을 중심으로)

  • HyeYeon Baek;Young Kyun Chang
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.27-41
    • /
    • 2023
  • Unlike the previous works focusing on the state-of-the-art methodologies to improve the performance of machine learning models, this study improves the 'quality' of training data used in machine learning. We propose a method to enhance the quality of training data through the processing of 'local grammar,' frequently used in corpus analysis. We collected a vast amount of unstructured corporate review text data posted by employees working in the top 100 companies in Korea. After improving the data quality using the local grammar process, we confirmed that the classification model with local grammar outperformed the model without it in terms of classification performance. We defined five factors of work engagement as classification categories, and analyzed how the pattern of reviews changed before and after the COVID-19 pandemic. Through this study, we provide evidence that shows the value of the local grammar-based automatic identification and classification of employee experiences, and offer some clues for significant organizational cultural phenomena.

Development of Information Extraction System from Multi Source Unstructured Documents for Knowledge Base Expansion (지식베이스 확장을 위한 멀티소스 비정형 문서에서의 정보 추출 시스템의 개발)

  • Choi, Hyunseung;Kim, Mintae;Kim, Wooju;Shin, Dongwook;Lee, Yong Hun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.111-136
    • /
    • 2018
  • In this paper, we propose a methodology to extract answer information about queries from various types of unstructured documents collected from multi-sources existing on web in order to expand knowledge base. The proposed methodology is divided into the following steps. 1) Collect relevant documents from Wikipedia, Naver encyclopedia, and Naver news sources for "subject-predicate" separated queries and classify the proper documents. 2) Determine whether the sentence is suitable for extracting information and derive the confidence. 3) Based on the predicate feature, extract the information in the proper sentence and derive the overall confidence of the information extraction result. In order to evaluate the performance of the information extraction system, we selected 400 queries from the artificial intelligence speaker of SK-Telecom. Compared with the baseline model, it is confirmed that it shows higher performance index than the existing model. The contribution of this study is that we develop a sequence tagging model based on bi-directional LSTM-CRF using the predicate feature of the query, with this we developed a robust model that can maintain high recall performance even in various types of unstructured documents collected from multiple sources. The problem of information extraction for knowledge base extension should take into account heterogeneous characteristics of source-specific document types. The proposed methodology proved to extract information effectively from various types of unstructured documents compared to the baseline model. There is a limitation in previous research that the performance is poor when extracting information about the document type that is different from the training data. In addition, this study can prevent unnecessary information extraction attempts from the documents that do not include the answer information through the process for predicting the suitability of information extraction of documents and sentences before the information extraction step. It is meaningful that we provided a method that precision performance can be maintained even in actual web environment. The information extraction problem for the knowledge base expansion has the characteristic that it can not guarantee whether the document includes the correct answer because it is aimed at the unstructured document existing in the real web. When the question answering is performed on a real web, previous machine reading comprehension studies has a limitation that it shows a low level of precision because it frequently attempts to extract an answer even in a document in which there is no correct answer. The policy that predicts the suitability of document and sentence information extraction is meaningful in that it contributes to maintaining the performance of information extraction even in real web environment. The limitations of this study and future research directions are as follows. First, it is a problem related to data preprocessing. In this study, the unit of knowledge extraction is classified through the morphological analysis based on the open source Konlpy python package, and the information extraction result can be improperly performed because morphological analysis is not performed properly. To enhance the performance of information extraction results, it is necessary to develop an advanced morpheme analyzer. Second, it is a problem of entity ambiguity. The information extraction system of this study can not distinguish the same name that has different intention. If several people with the same name appear in the news, the system may not extract information about the intended query. In future research, it is necessary to take measures to identify the person with the same name. Third, it is a problem of evaluation query data. In this study, we selected 400 of user queries collected from SK Telecom 's interactive artificial intelligent speaker to evaluate the performance of the information extraction system. n this study, we developed evaluation data set using 800 documents (400 questions * 7 articles per question (1 Wikipedia, 3 Naver encyclopedia, 3 Naver news) by judging whether a correct answer is included or not. To ensure the external validity of the study, it is desirable to use more queries to determine the performance of the system. This is a costly activity that must be done manually. Future research needs to evaluate the system for more queries. It is also necessary to develop a Korean benchmark data set of information extraction system for queries from multi-source web documents to build an environment that can evaluate the results more objectively.

A Study on Classifications and Trends with Convergence Form Characteristics of Architecture in Tall Buildings (초고층빌딩의 융합적 건축형태 분류와 경향에 관한 연구)

  • Park, Sang Jun
    • Korea Science and Art Forum
    • /
    • v.37 no.5
    • /
    • pp.119-133
    • /
    • 2019
  • This study is as skyscrapers are becoming increasingly taller, more constructors have decided the height alone cannot be a sufficient differentiator. As a result, atypical architecture is emerging as a new competitive factor. Also, it can be used for symbolizing the economic competitiveness of a country, city, or business through its form. Before the introduction of digital media, there was a discrepancy between the structure and form of a building and correcting this discrepancy required a separate structural medium. Since the late 1980s, however, digitally-based atypical form development began to be used experimentally, and, until the 2000s, it was used mostly for super-tall skyscrapers for offices or for industrial chimneys and communication towers. Since the 2000s, many global brand hotels and commercial and residential buildings have been built as super-tall skyscrapers, which shows the recent trend in architecture that is moving beyond the traditional limits. Complex atypical structure is formed and the formative characteristics of diagonal lines and curved surfaces, which are characteristics of atypical architecture, are created digitally. Therefore, it's goal is necessary to identify a new relationship between the structure and forms. According to the data of Council on Tall Buildings and Urban Habitat (CTBUH), 100-story and taller buildings were classified into typical, diagonal, curved, and segment types in order to define formative shapes of super-tall skyscrapers and provide a ground of the design process related to the initial formation of the concept. The purpose of this study was to identify the correlation between different forms for building atypical architectural shapes that are complex and diverse. The study results are presented as follows: Firstly, complex function follows convergence form characteristics. Secondly, fold has inside of architecture with repeat. Thirdly, as curve style which has pure twist, helix twist, and spiral twist. The findings in this study can be used as basic data for classifying and predicting trends of the future super-tall skyscrapers.

Utilization of Social Media Analysis using Big Data (빅 데이터를 이용한 소셜 미디어 분석 기법의 활용)

  • Lee, Byoung-Yup;Lim, Jong-Tae;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.211-219
    • /
    • 2013
  • The analysis method using Big Data has evolved based on the Big data Management Technology. There are quite a few researching institutions anticipating new era in data analysis using Big Data and IT vendors has been sided with them launching standardized technologies for Big Data management technologies. Big Data is also affected by improvements of IT gadgets IT environment. Foreran by social media, analyzing method of unstructured data is being developed focusing on diversity of analyzing method, anticipation and optimization. In the past, data analyzing methods were confined to the optimization of structured data through data mining, OLAP, statics analysis. This data analysis was solely used for decision making for Chief Officers. In the new era of data analysis, however, are evolutions in various aspects of technologies; the diversity in analyzing method using new paradigm and the new data analysis experts and so forth. In addition, new patterns of data analysis will be found with the development of high performance computing environment and Big Data management techniques. Accordingly, this paper is dedicated to define the possible analyzing method of social media using Big Data. this paper is proposed practical use analysis for social media analysis through data mining analysis methodology.

A Study on an Automatic Classification Model for Facet-Based Multidimensional Analysis of Civil Complaints (패싯 기반 민원 다차원 분석을 위한 자동 분류 모델)

  • Na Rang Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.135-144
    • /
    • 2024
  • In this study, we propose an automatic classification model for quantitative multidimensional analysis based on facet theory to understand public opinions and demands on major issues through big data analysis. Civil complaints, as a form of public feedback, are generated by various individuals on multiple topics repeatedly and continuously in real-time, which can be challenging for officials to read and analyze efficiently. Specifically, our research introduces a new classification framework that utilizes facet theory and political analysis models to analyze the characteristics of citizen complaints and apply them to the policy-making process. Furthermore, to reduce administrative tasks related to complaint analysis and processing and to facilitate citizen policy participation, we employ deep learning to automatically extract and classify attributes based on the facet analysis framework. The results of this study are expected to provide important insights into understanding and analyzing the characteristics of big data related to citizen complaints, which can pave the way for future research in various fields beyond the public sector, such as education, industry, and healthcare, for quantifying unstructured data and utilizing multidimensional analysis. In practical terms, improving the processing system for large-scale electronic complaints and automation through deep learning can enhance the efficiency and responsiveness of complaint handling, and this approach can also be applied to text data processing in other fields.

Analysis of Factors for Korean Women's Cancer Screening through Hadoop-Based Public Medical Information Big Data Analysis (Hadoop기반의 공개의료정보 빅 데이터 분석을 통한 한국여성암 검진 요인분석 서비스)

  • Park, Min-hee;Cho, Young-bok;Kim, So Young;Park, Jong-bae;Park, Jong-hyock
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1277-1286
    • /
    • 2018
  • In this paper, we provide flexible scalability of computing resources in cloud environment and Apache Hadoop based cloud environment for analysis of public medical information big data. In fact, it includes the ability to quickly and flexibly extend storage, memory, and other resources in a situation where log data accumulates or grows over time. In addition, when real-time analysis of accumulated unstructured log data is required, the system adopts Hadoop-based analysis module to overcome the processing limit of existing analysis tools. Therefore, it provides a function to perform parallel distributed processing of a large amount of log data quickly and reliably. Perform frequency analysis and chi-square test for big data analysis. In addition, multivariate logistic regression analysis of significance level 0.05 and multivariate logistic regression analysis of meaningful variables (p<0.05) were performed. Multivariate logistic regression analysis was performed for each model 3.

Analysis Method of Module Type Crash Cushion (모듈형태의 충격흡수장치 해석방법)

  • Ko, Man-Gi;Kim, Kee-Dong;Sung, Jung-Gon;Yun, Duk-Geun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.97-104
    • /
    • 2008
  • Many atypical structures on the roadside are exposed to traffics unshielded posing great danger. One way to shield an atypical structure to secure the occupant safety is to stack energy absorbing material modules in front of the structure. This paper presents the analysis method of module type crash cushion made of EPS blocks using simple energy balance of the car and crash cushion and numerical examples for 0.9ton-500km/h, 0.9ton-60km/h and 0.9ton-70km/h impact are presented. This method gives simple estimation of maximum acceleration, time of crash, whether or not the vehicle stops completely before whole cushion is being crushed. However, since the acceleration and velocity data from the analysis is so crudely spaced that calculation of safety indices such is RA and OIV is not possible. Problem is overcome by using data interpolation. The spline and linear interpolation is introduce and safety analysis is made and the results are compared.

  • PDF