• Title/Summary/Keyword: 비정형분석

Search Result 484, Processing Time 0.026 seconds

A Study on Recognition of Artificial Intelligence Utilizing Big Data Analysis (빅데이터 분석을 활용한 인공지능 인식에 관한 연구)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.129-130
    • /
    • 2018
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Artificial Intelligence" keyword, one month as of May 19, 2018. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Artificial Intelligence" has been found to be technology (4,122). This study suggests theoretical implications based on the results.

  • PDF

An Insight Study on Keyword of IoT Utilizing Big Data Analysis (빅데이터 분석을 활용한 사물인터넷 키워드에 관한 조망)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.146-147
    • /
    • 2017
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Internet of things" keyword, one month as of october 8, 2017. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Internet of things" has been found to be technology (995). This study suggests theoretical implications based on the results.

  • PDF

Emotional analysis system for social media using sentiment dictionary with newly-created words

  • Shin, Pan-Seop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Emotional analysis is an application of opinion mining that analyzes opinions and tendencies of people appearing in unstructured text. Recently, emotional analysis of social media has attracted attention, but social media contains newly-created words and slang, so it is not easy to analyze with existing emotional analysis. In this study, I design a new emotional analysis system to solve these problems. The proposed system is possible to analyze various emotions as well as positive and negative in social media including newly-created words and slang. First, I collect newly-created words and slang related to emotions that appear in social media. Then, expand the existing emotional model and use it to quantify the degree of sentiment in emotional words. Also, a new sentiment dictionary is constructed by reflecting the degree of sentiment. Finally, I design an emotional analysis system that applies an sentiment dictionary that includes newly-created words and an extended emotional model.

Analysis of Domestic Security Solution Market Trend using Big Data (빅데이터를 활용한 국내 보안솔루션 시장 동향 분석)

  • Park, Sangcheon;Park, Dongsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.492-501
    • /
    • 2019
  • To use the system safely in cyberspace, you need to use a security solution that is appropriate for your situation. In order to strengthen cyber security, it is necessary to accurately understand the flow of security from past to present and to prepare for various future threats. In this study, information security words of security/hacking news of Naver News which is reliable by using text mining were collected and analyzed. First, we checked the number of security news articles for the past seven years and analyzed the trends. Second, after confirming the security/hacking word rankings, we identified major concerns each year. Third, we analyzed the word of each security solution to see which security group is interested. Fourth, after separating the title and the body of the security news, security related words were extracted and analyzed. The fifth confirms trends and trends by detailed security solutions. Lastly, annual revenue and security word frequencies were analyzed. Through this big data news analysis, we will conduct an overall awareness survey on security solutions and analyze many unstructured data to analyze current market trends and provide information that can predict the future.

제조기업 현장 데이터를 이용한 빅데이터 분석시스템 모델

  • Kim, Jae-Jung;Seong, Baek-Min;Yu, Jae-Gon;Gang, Chan-U;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.741-743
    • /
    • 2015
  • 오늘날 BI(Business Intelligence)시스템 다차원 데이터를 다루는 많은 방법들이 제안되어 TB 이상의 데이터를 다룰 수 있다. 하지만 IT 전문가 및 IT에 대한 투자여력이 충분하지 않은 중소 제조 기업들은 발 맞춰가기 힘들다. 또한 생산관리시스템(MES)을 미 도입한 기업이 대다수이고, 존재하는 현장데이터의 대부분도 수기데이터 또는 Excel 데이터로 보관 되어 있어, 수작업에 의한 데이터 분석과 의사결정을 수행한다. 이로 인해, 불량 요인 파악이나 이상 현상 파악이 불분명하기 때문에 데이터 분석에 어려움을 겪는다. 이에 본 연구에서는 중소제조기업의 경쟁력 강화를 위하여 제조 기업현장에서 사용되는 데이터를 자동으로 수집하여 정제 및 처리하여 저장이 가능하도록 하는 빅 데이터 분석 시스템 모델을 개발하였다. 이 분석 시스템 모델은 ERP, MIS 등에 존재하는 데이터들이 각 시스템의 DB 기능을 활용하여 데이터를 추출하고 정제하여 수집하는 ETL(Extract Transform Loading)과정을 통한다. 현장에서 비정형으로 기록되고 있는 정보들(ex. Excel)은 ODE(Office Data Excavation)모듈을 통해 문서의 패턴을 자동으로 인식하고 정형화된 정보로서 추출, 정제되어 수집된다. 저장된 데이터는 오픈소스 데이터 시각화 라이브러리인 D3.js를 이용하여 다양한 chart들을 통한 강력한 시각효과를 제공함으로써, 정보간의 연관 관계 및 다차원 분석의 기반을 마련하여 의사결정체계를 효과적으로 지원한다. 또한, 높은 가격에 형성되어 있는 빅데이터 솔루션을 대신해 오픈소스 Spago BI를 이용하여 경제적인 빅 데이터 솔루션을 제공한다. 본 연구의 기대효과로는 첫째, 현장 데이터 중심의 효과적인 의사결정 기반을 마련할 수 있다. 둘째, 통합 데이터 기반의 연관/다차원 분석으로 경영 효율성이 향상된다. 마지막으로, 중소 제조기업 환경에 적합한 분석 시스템을 구축함으로써 경쟁력과 생산력을 강화한다.

  • PDF

A Review of Influencing Aronia Intake on Human Body in Korea (국내 아로니아 습취가 인체에 미치는 영향에 관한 문헌분석)

  • Nam, Soo-Tai;Yu, Ok-Kyeong;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.149-152
    • /
    • 2017
  • Big data analysis is an effective analysis techniques of unstructured data such as internet, social network services, web documents generated in mobile environment, e-mail, and social data, as well as formal data well organized in the database. Thus, meta-analysis is a statistical integration method that delivers an opportunity to overview the entire result of integrating and analyzing many quantitative research results. Today, regardless of gender and age is increasing interest in whether you can lead a younger and healthier life. With this change of life which has been developed with a variety of functional health food. Aronia melanocarpa called black chokeberry is a fruit of berry plants belonging to the Rosaceae originally growing in the North America region. In the studies for factors related to quality characteristics and antioxidant activities as the extracts of Aronia in this study, which it is only targeted factors as total sugar, acidity, polyphenol, anthocyanin, antioxidant. Thus, we present the theoretical and practical implications of these results.

  • PDF

A Study on the Development of Product Planning Prediction Model Using Logistic Regression Algorithm (로지스틱 회귀 알고리즘을 활용한 상품 기획 예측 모형 개발에 관한 연구)

  • Ahn, Yeong-Hwil;Park, Koo-Rack;Kim, Dong-Hyun;Kim, Do-Yeon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.39-47
    • /
    • 2021
  • This study was conducted to propose a product planning prediction model using logistic regression algorithm to predict seasonal factors and rapidly changing product trends. First, we collected unstructured data of consumers in portal sites and online markets using web crawling, and analyzed meaningful information about products through preprocessing for transformation of standardized data. The datasets of 11,200 were analyzed by Logistic Regression to analyze consumer satisfaction, frequency analysis, and advantages and disadvantages of products. The result of analysis showed that the satisfaction of consumers was 92% and the defective issues of products were confirmed through frequency analysis. The results of analysis on the use satisfaction, system efficiency, and system effectiveness items of the developed product planning prediction program showed that the satisfaction was high. Defective issues are very meaningful data in that they provide information necessary for quickly recognizing the current problem of products and establishing improvement strategies.

Association Analysis for Detecting Abnormal in Graph Database Environment (그래프 데이터베이스 환경에서 이상징후 탐지를 위한 연관 관계 분석 기법)

  • Jeong, Woo-Cheol;Jun, Moon-Seog;Choi, Do-Hyeon
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.15-22
    • /
    • 2020
  • The 4th industrial revolution and the rapid change in the data environment revealed technical limitations in the existing relational database(RDB). As a new analysis method for unstructured data in all fields such as IDC/finance/insurance, interest in graph database(GDB) technology is increasing. The graph database is an efficient technique for expressing interlocked data and analyzing associations in a wide range of networks. This study extended the existing RDB to the GDB model and applied machine learning algorithms (pattern recognition, clustering, path distance, core extraction) to detect new abnormal signs. As a result of the performance analysis, it was confirmed that the performance of abnormal behavior(about 180 times or more) was greatly improved, and that it was possible to extract an abnormal symptom pattern after 5 steps that could not be analyzed by RDB.

A Meta Analysis of Innovation Diffusion Theory based on Behavioral Intention of Consumer (혁신확산이론 기반 소비자 행위의도에 관한 메타분석)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.140-141
    • /
    • 2017
  • Big data analysis, in the large amount of data stored as the data warehouse which it refers the process of discovering meaningful new correlations, patterns, trends and creating new values. Thus, Big data analysis is an effective analysis of various big data that exist all over the world such as social big data, machine to machine (M2M) sensor data, and corporate customer relationship management data. In the big data era, it has become more important to effectively analyze not only structured data that is well organized in the database, but also unstructured big data such as the internet, social network services, and explosively generated web documents, e-mails, and social data in mobile environments. By the way, a meta analysis refers to a statistical literature synthesis method from the quantitative results of many known empirical studies. We reviewed a total of 750 samples among 50 studies published on the topic related as IDT between 2000 and 2017 in Korea.

  • PDF

Analysis of Performance of Creative Education based on Twitter Big Data Analysis (트위터 빅데이터 분석을 통한 창의적 교육의 성과요인 분석)

  • Joo, Kilhong
    • Journal of Creative Information Culture
    • /
    • v.5 no.3
    • /
    • pp.215-223
    • /
    • 2019
  • The wave of the information age gradually accelerates, and fusion analysis solutions that can utilize these knowledge data according to accumulation of various forms of big data such as large capacity texts, sounds, movies and the like are increasing, Reduction in the cost of storing data accordingly, development of social network service (SNS), etc. resulted in quantitative qualitative expansion of data. Such a situation makes possible utilization of data which was not trying to be existing, and the potential value and influence of the data are increasing. Research is being actively made to present future-oriented education systems by applying these fusion analysis systems to the improvement of the educational system. In this research, we conducted a big data analysis on Twitter, analyzed the natural language of the data and frequency analysis of the word, quantitative measure of how domestic windows education problems and outcomes were done in it as a solution.