The field of searching clothing, which is very difficult due to the nature of the informal sector, has been in an effort to reduce the recognition error and computational complexity. However, there is no concrete examples of the whole progress of learning and recognizing for cloth, and the related technologies are still showing many limitations. In this paper, the whole process including identifying both the person and cloth in an image and analyzing both its color and texture pattern is specifically shown for classification. Especially, deformable search descriptor, LBPROT_35 is proposed for identifying the pattern of clothing. The proposed method is scale and rotation invariant, so we can obtain even higher detection rate even though the scale and angle of the image changes. In addition, the color classifier with the color space quantization is proposed not to loose color similarity. In simulation, we build database by training a total of 810 images from the clothing images on the internet, and test some of them. As a result, the proposed method shows a good performance as it has 94.4% matching rate while the former Dense-SIFT method has 63.9%.
Traditional method of establishing prediction model is usually using formal data stored in Data Base. However, nowadays advent of "smart" era brought by ground-breaking development of communication system makes informal data to dominate overall data, such 80% in total. Therefore, conventional method using formal data as establishing predicting model would be untrustworthy means in present. In other words, it is indispensible to make prediction model credible including informal data(SNS, image, video) and semi-formal data(log data). In this study, we increase credibility of predicting model adapting Bigdata method and comparing reliability of conventional measurement to real-data.
Korean Journal of Construction Engineering and Management
/
v.7
no.1
s.29
/
pp.73-79
/
2006
Even though graphical simulation is very useful for construction planning, the application of graphical simulation has a limitation in dealing with objects without fixed form like earthmoving process. In this case, the mathematical/statistical simulation about the productivity of the whole processes based on the numerical data of working time, waiting time and working capacity of using equipment becomes effective. The mathematical/statistical simulation is not fully utilized in the field of construction due to the difficulties of creating process models and securing trust the numerically expressed results of simulation. In this research, the output of discrete-event simulation programs which are the most common mathematical/statistical simulation tool for construction processes were analyzed for the purpose of earthmoving process visualization. The purpose of this research is to develop a graphical simulation system that can help the construction planner select most suitable equipment and construction methods through the visualize the numerical simulation results of the working time, the queuing time as well as the amount resources etc.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.309-309
/
2018
기후변화에 따른 강우의 규모와 발생빈도 증가로 농촌유역의 홍수 피해는 지속적으로 증가하고 있다. 하지만 우리나라의 홍수 피해 저감 대책은 도시지역의 대하천 주변으로 집중되어있으며, 소하천 및 농촌유역의 홍수 피해 저감에 대한 관리와 투자 노력은 부족한 실정이다. 특히, 최근 들어 갑작스런 집중호우 등으로 인한 농촌유역 돌발홍수 피해 사례가 증가하고 있으며, 이에 대응하기 위해서는 홍수 발생 등을 신속하게 파악하기 위한 돌발홍수 예경보 시스템 개발이 필요하다. 한편, 최근 산업의 혁신과 생산성 향상을 위한 새로운 패러다임으로 4차 산업혁명이 대두되고 있으며, 빅데이터와 인공지능 (Artificial Intelligence, AI)을 비롯하여 사물인터넷 (Internet of Things, IoT), 드론, 슈퍼컴퓨팅 등의 이른바 4차 산업혁명 기술을 활용한 연구가 수행되고 있다. 본 연구에서는 기후변화에 따른 농촌유역 홍수 피해를 저감하고 또한 사전에 대비하기 위해 빅데이터와 인공지능 등 4차 산업혁명 기술을 적용한 농촌유역 돌발홍수 예경보 시스템을 개발하고 그 적용성을 평가하고자 한다. 우선, 농촌유역의 홍수와 관련된 빅데이터 (기상 자료, 수문 자료, 기후변화 자료, 농업용 수리구조물 자료 등)를 토대로 정형 빅데이터와 비정형 빅데이터를 구분 추출하고 이를 연계 해석할 수 있는 시스템을 개발하였다. 추출한 정형 및 비정형 빅데이터를 활용하여 딥러닝을 기반으로 농촌유역의 홍수를 예측하고 홍수 예경보 기준에 따른 평가를 수행할 수 있는 시스템을 개발하였다. 과거 강우사상을 홍수 예경보 시스템에 적용하여 홍수 모의 결과를 도출하였으며, 재해연보 등과 비교 분석하여 시스템의 적용성을 분석하였다.
Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.
Proceedings of the Korean Society of Computer Information Conference
/
2016.01a
/
pp.77-78
/
2016
빅 데이터의 데이터 수집 및 분석 기술에 대한 연구는 컴퓨터 과학 분야에서 각광 받고 있다. 또한 소셜 미디어로 인한 대량의 비정형 데이터 분석을 요구하는 다양한 분야에 접목되어 효용성을 인정받고 있다. 그러나 빅 데이터 개념을 기반으로 하는 하둡과 스파크는 유즈케이스에 따라 성능이 크게 달라진다는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 하둡의 맵리듀스를 줄이고 아파치 스파크를 이용한 빅 데이터 분석을 위하여 머신러닝 알고리즘인 K-Means 알고리즘을 이용하여 프로세싱 모델의 성능을 비교한다.
지난 몇 년간 우리는 소셜 검색에 몰두하여 연관검색 및 소비자의 만족을 위해 빅데이터 분석을 하였다. 최근에는 빅데이터 분석이라는 흐름에 맞춰 기업 및 기관별 본연의 정보를 통합하여 효율적인 검색을 할 수 있도록 하는 솔루션을 대거 도입하고 있다. 또한 기업 및 기관에서 가지고 있는 정보는 기존 비정형 데이터로 방대하여 기존의 방법이나 도구로 수집 및 저장 분석이 어려운 실정이다. 이에 공공기관 및 민간기업 등에서는 키워드 중심의 다양한 검색엔진을 개발하거나 도입하고 있으며, 정보 분류의 확대, 메타데이터의 활용, 태그정보의 제공, 개인 맞춤형 서비스 등 고객의 만족도를 제고하기 위한 다양한 방법을 시도하고 있다. 본 연구에서는 기관의 교통 연구와 관련한 일련의 작업 중 행정문서, 연구정보, 유관기관 게시물 등의 통합 빅데이터를 가지고 검색시스템을 구현하였다. 이와 더불어 사용자 사전 및 동의어 사전을 통한 검색 키워드를 데이터베이스에 저장하여 검색 효율성을 제고하는 방안을 제시한다.
형태소 분석을 통하여 한국어 문장을 형태소 단위의 임베딩 및 학습 관련 연구가 되었으나 최근 비정형적인 텍스트 데이터의 증가에 따라 음소 단위의 임베딩을 통한 신경망 학습에 대한 요구가 높아지고 있다. 본 논문은 비정형적인 텍스트 감성 분석 성능 향상을 위해 음소 단위의 토큰을 생성하고 이를 CNN 모형을 기반으로 다차원 임베딩을 수행하고 감성분석을 위하여 양방향 순환신경망 모델을 사용하여 유튜브의 비정형 텍스트를 학습시켰다. 그 결과 텍스트의 긍정 부정 판별에 있어 90%의 정확도를 보였다.
Kim, Jae-Hyung;Noh, Hyo-Won;Kim, Nam-Ho;Chong, Jong-Wha
Annual Conference of KIPS
/
2000.04a
/
pp.10-15
/
2000
개별화 웹 마케팅은 본질적으로 고객지향의 패러다임이다. 즉, 개별 고객의 특수한 니즈를 개별적으로 파악해서 각각의 고객에게 차별화된 서비스를 제공하는 것이 그 핵심이다. 웹 서버의 로그파일에 데이터마이닝의 연관규칙 기술을 이용하게 되면 고객행동 패턴의 파악 및 예측을 위한 기법으로 활용할 수 있다. 본 연구에서는 웹 사용자의 교차 판매를 위한 원투원 마케팅에 필요한 접근패턴을 분석하고자 하며, 이는 웹서버 로그파일 분석을 통하여 이루어진다. 분석하고자 하는 웹서버 로그파일은 기존의 데이터웨어하우스의 원천 데이터들과는 다르게 비정형적인 데이터 구조를 가지고있다. 이들 비정형 데이터 처리와 교차판매 지원을 위한 데이터마이닝 모델링, 이를 통한 원투원 마케팅 모델 제시, 그리고 이의 활용이 고객관계관리(CRM)에 미치는 효과를 제시한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.215-219
/
2020
현재 한글 언어학 영역에서는 많은 언어 분석 연구가 수행되었다. 또한 소프트웨어공학의 요구공학 영역에서는 명료한 요구사항 정의와 분석이 필요하고, 비정형화된 요구사항 명세서로부터 테스트 케이스 추출이 매우 중요한 이슈이다. 즉, 자연어 기반의 요구사항 명세서로부터 원인-결과 그래프(Cause-Effect Graph)를 통한 의사 결정 테이블(Decision Table) 기반 테스트케이스(Test Case)를 자동 생성하는 방법이 거의 없다. 이런 문제를 해결하기 위해 '한글 언어 의미 분석 기법'을 '요구공학 영역'에 적용하는 방법이 필요하다. 본 논문은 비정형화된 요구사항으로부터 테스트케이스 생성하는 과정의 중간 단계인 요구사항에서 문장 의미 모델(Sentence Semantic Model)을 자동 생성하는 방법을 제안 한다. 이는 요구사항으로부터 생성된 원인-결과 그래프의 정확성을 검증할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.