• 제목/요약/키워드: 비정형데이터분석

검색결과 405건 처리시간 0.031초

토픽 모델링을 이용한 비정형 데이터 기반 산업간 유사도 분석 (Analysis of similarity between industries based on unstructured data using topic modeling)

  • 김경원;박종빈;정종진;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.180-182
    • /
    • 2018
  • 최근 빠르게 변화하는 산업 환경에서 뉴스 기사와 같은 비정형 데이터를 기반으로 산업 트랜드를 분석하기 위한 연구가 진행되고 있다. 뉴스와 같은 비정형 데이터를 기반으로 산업별 트랜드를 분석하기 위해서는 분석 대상 산업에 대한 많은 양의 시계열 데이터가 요구된다. 하지만, 수집된 비정형 데이터를 분류하면 산업별/기간별 일정하지 않은 데이터 분포를 보이거나, 특정 산업에 대해서는 특정 기간에 데이터가 존재하지 않은 경우가 발생하여 산업별 시계열 분석이 어려운 경우가 발생할 수 있다. 이에, 본 논문에서는 산업별/기간별 균일하지 못한 비정형 데이터의 분포를 보정하기 위한 방법으로 비정형 데이터 기반 산업간 유사도를 분석 기법을 제안한다. 산업별 유사도 분석을 위해 각 산업별 주요 키워드를 도출하고 토픽 모델링 기법을 이용하여 산업간 유사도 분석을 통해 산업별/기간별 비정형 데이터 부족현상을 보완하는 방법을 제시한다.

  • PDF

정형/비정형 데이터 기반 산업 평가 정보 분석 및 시각화 서비스 구현 (Development of Structured/Unstructured data-based Industry Evaluation Information Analysis and Visualization Service)

  • 김경원;정승경;조대근;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.177-179
    • /
    • 2018
  • 기존 산업평가 방법은 산업별로 분류된 기업의 재무, 비재무 관련 정형 데이터를 기반으로 통계적 기법을 이용하여 각 산업을 평가하고 있다. 이러한 정형 데이터 기반의 산업 평가 방법은 산업별 재무 정보의 집계 및 통계에 오랜 시간이 소요된다. 따라서, 현재 시장 상황을 반영하기 어려운 현실이다. 최근에는 빠르게 변화하는 산업 환경을 반영하기 위해 뉴스 기사와 같은 비정형 데이터를 통해 산업 트랜드를 분석하기 위한 연구가 이루어 지고 있다. 이에, 본 논문에서는 실시간으로 변화하는 산업 트렌드를 반영하여 적시에 산업 분석 정보를 제공하기 위해 정형/비정형 데이터 기반의 산업평가 정보 분석 엔진을 구현하고, 산업별로 분석된 산업평가 정보를 활용하여 사용자가 직관적인 판단을 할 수 있도록 산업평가 정보 시각화 서비스를 제안한다.

  • PDF

비정형데이터를 활용한 홍수 모니터링 및 예측 (Flood monitoring and prediction using online unstructured data)

  • 이정하;황석환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.118-118
    • /
    • 2019
  • 현재 홍수예보는 정형데이터인 유량 및 수위 등을 활용하여 이뤄지고 있다. 하지만 실제 사람들이 체감하는 홍수에 대한 위험도는 홍수예보 발령과는 달라 홍수예보가 이뤄지지 않은 지역에서 인명사고가 발생하기도 한다. 이는 수위 측정이 이뤄지지 않는 소규모 하천이나 사람들의 유동성이 큰 도심지역에서 빈번하게 발생한다. 이를 보완하기 위해서는 사람들의 체감 정도 및 인구의 유동성을 고려한 비정형데이터를 활용해야 한다. 특히 소셜 네트워크 서비스(Social Network Commuinty, SNS)를 사용하는 사람들이 많아지면서 기존에 사용되어 왔던 정형데이터 센서 이외의 데이터를 제공한다. 또한 개개인이 작성하는 글은 실시간으로 활용이 가능하여 인구의 유동성 및 시 공간적 데이터를 얻기에 유용하여 활용성이 매우 높은 비정형데이터이다. 따라서 본 연구에서는 SNS 데이터를 추출하고 이를 분석하여 2018년에 발생했던 강우사상과의 패턴을 비교하여 홍수예보에서의 활용성을 분석하였다. 홍수와 관련한 키워드를 중심으로 시 공간적 정보 및 추출이 가능한 웹 크롤러(Web Crawler) 프로그램을 작성하였으며 이를 토대로 데이터를 수집하였다. 수집한 데이터와 실제 홍수사상을 비교 분석을 한 결과 강우량 및 수위와 해당 지역에 대한 데이터의 양이 유사한 패턴을 보인 것으로 확인되었다. 실시간으로 데이터를 수집하고 이를 분석하여 리드타임을 충분히 확보한다면 홍수예측에 활용 가능할 것이라 생각된다. 본 연구는 한국건설기술연구원 19주요-대4-시드사업인 '커뮤니티 빅데이터 패턴 해석을 통한 수난(水難) 발생 및 규모 예측 기술 개발(20190126-001) '로 수행되었습니다.

  • PDF

뉴스 빅데이터 분석을 활용한 가뭄지수 재생산 (Reproduction of drought index using news big data analysis)

  • 정진홍;박동혁;안재현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.386-386
    • /
    • 2020
  • 가뭄은 강수, 증발산, 대기온도, 토양수분 등 다양한 수문기상학적 인자들이 복합적으로 작용하여 발생되기 때문에 가뭄의 정확한 사상을 분석하는 것은 매우 어렵다. 또한 어떤 요인을 중심으로 고려하느냐에 따라 가뭄은 다양한 시각으로 정의되고 있다. 일정기간 평균 강수량보다 적은 강수로 인해 건조한 날이 지속되는 것, 즉 기상요소를 중심으로 가뭄을 정의하는 것을 기상학적 가뭄이라 하며, 작물의 생육에 필요한 수분을 중심으로 고려하는 것을 농업적 가뭄이라 한다. 또한 하천유량, 댐 저수량 등 전반적인 수자원 공급원의 부족을 수문학적 가뭄이라 한다. 이와 같이 다양하게 나타는 가뭄의 발생특성을 정량적으로 해석하기 위해 다양한 가뭄지수가 개발되어 왔다. 그러나 현재까지 개발된 가뭄지수들은 공통적으로 정형데이터를 활용하여 산정한다. 하지만 최근에는 비정형데이터를 활용하여 지수(Index)를 산정하거나, 재난관리에 적용하는 등 비정형 데이터의 활용이 급증하고 있다. 따라서 본 연구에서는 비정형 데이터(뉴스 데이터)를 활용하여 가뭄지수를 산정하고 기존의 가뭄지수들과의 상관성 분석을 실시 한 뒤, 지수결합을 통해 가뭄사상 분석의 새로운 방안을 제시하고자 하였다. 본 연구의 공간적범위는 2014~2015 충남서북부가뭄 지역 중 가장 큰 피해를 입었던 보령지역으로 선정하였으며 시간적범위는 2013~2016년으로 설정하였다. 비정형 데이터의 구축은 크롤링(Crawling)을 활용하여 네이버 뉴스의 기사를 수집하였으며 자료의 신뢰성을 위해 URL이 동일한 중복기사 및 '보령', '가뭄' 단어가 없는 기사는 제거하였다. 구축된 데이터를 기반으로 월별 빈도를 산출하고 표준점수(Z-score)로 환산하여 가뭄지수를 산정하였다. 산정된 가뭄지수가 어떤 가뭄의 유형(기상학적, 농업적, 수문학적)을 보이는지 확인하기 위해 기존의 가뭄지수들과 상관성분석을 실시하였으며, 가장 높은 상관성을 보이는 가뭄지수와 결합을 통해 새로운 가뭄 사상을 분석하였다. 본 연구에서 진행한 가뭄사상 분석은 향후 가뭄만이 아니라 다양한 재난분야에서 비정형 데이터를 활용한 분석의 기초로자료로 활용될 수 있을 것이다.

  • PDF

정형 데이터와 비정형 데이터를 동시에 고려하는 기계학습 기반의 직업훈련 중도탈락 예측 모형 (A Machine Learning-Based Vocational Training Dropout Prediction Model Considering Structured and Unstructured Data)

  • 하만석;안현철
    • 한국콘텐츠학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-15
    • /
    • 2019
  • 직업훈련 교육 현장에서 느끼는 가장 큰 어려움 중 하나는 중도탈락 문제이다. 훈련과정마다 많은 수의 학생들이 중도탈락을 하게 되어 국가 예산 낭비 및 청년 취업률 개선에 장애 요인이 되고 있다. 본 연구에서는 중도탈락의 원인을 주로 분석한 기존 연구들과 달리, 각종 수강생 정보를 활용하여 사전에 중도탈락을 예측할 수 있는 기계학습 기반 모형을 제안하고자 한다. 특히 본 연구의 제안모형은 수강생 관련 정형 데이터 뿐 아니라 비정형 데이터인 강사의 상담일지 정보까지 동시에 고려하여 모형의 예측정확도를 제고하고자 하였다. 이 때 비정형 데이터에 대한 분석은 최근 주목받고 있는 텍스트 분석 기술인 Word2vec과 합성곱 신경망을 이용해 수행하였다. 국내 한 직업훈련기관의 실제 데이터에 제안모형을 적용해 본 결과, 정형데이터만을 사용하여 중도탈락을 예측할 때보다 비정형 데이터를 함께 고려했을 때 예측의 정확도가 최대 20%까지 향상됨을 확인할 수 있었다. 아울러, Support Vector Machine을 기반으로 정형 데이터와 비정형 데이터를 결합해 분석했을 때, 검증용 데이터셋 기준으로 90% 후반대의 높은 예측 정확도를 나타냄을 확인하였다.

비정형 빅데이터 수집 모듈의 구현 및 비교 (Implementation and Comparison of Atypical Big-Data Collecting Modules)

  • 김정기;천요섭;김우생
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.631-634
    • /
    • 2014
  • 최근 스마트폰의 보급으로 블로그, SNS 등에서 방대한 양의 데이터가 발생함에 따라 이를 수집하고 분석하는 작업의 중요성이 커지고 있다. 이러한 데이터는 크게 정형 데이터와 비정형 데이터로 나눌 수 있는데, 특히 비정형 데이터는 전체 데이터의 약 80%를 차지할 정도로 그 양과 가치가 매우 크다. 이 논문에서는 빅데이터 환경에서 발생하는 이러한 비정형 데이터를 수집하는 모듈 중 가장 널리 알려진 Chukwa와 Flume에 대한 개발 및 비교 분석을 시도 하였다.

장비점검 일지의 비정형 데이터분석을 통한 고장 대응 효율화 사례 연구 (Unstructured Data Analysis using Equipment Check Ledger: A Case Study in Telecom Domain)

  • 주연진;김유신;정승렬
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.127-135
    • /
    • 2020
  • 비정형 데이터의 수집, 분석 그리고 활용에 대한 필요성이 대두되고 있지만 여전히 비정형 데이터를 효과적으로 활용하지 못하고 있는 실정이다. 본 연구에서는 국내 유수 이동통신 기업의 통신 시설장비 점검 시스템에 기록된 비정형데이터를 분석하여 장비고장 대응과 예방에 적극 활용할 수 있는 기반을 만들고자 하였고, 약 220만 건의 작업일지 데이터를 텍스트 마이닝을 통해 구조화/정형화 하였다. 이를 위해 장비 고장과 관련된 4가지 분석 프레임, 고장인지, 고장원인, 고장대상, 조치결과를 구성하였고 분석 결과로는 크게 3가지의 효율화 방안과 관련한 인사이트를 얻을 수 있었다. 첫 번째로는 신속한 조치를 통한 시간 단축을 도모하고, 두 번째로는 고장장비 Unit 수요를 예측하고, 마지막으로 현장 출동의 최소화를 지원할 수 있을 것으로 기대되었다. 결론적으로, 본 사례연구는 통신시설 장비 고장 대응을 위해 데이터 분석 대상을 정형 데이터뿐만 아니라 장비일지라는 비정형 빅데이터로도 범위를 확장했으며, 이를 분석에 활용하기 위해 처음으로 텍스트 마이닝을 시도를 했다는데 의의를 가진다. 또한 N사는 정형 데이터 뿐 만아니라 년 80만 건씩 축적되던 비정형 데이터의 활용 가치를 확인할 수 있던 기회를 가졌으며, 향후 비정형 데이터의 활용 방안에 대한 발전방향 그리고 추후의 정형 데이터와의 연계 분석 방안 등에 대한 가이드를 확보할 수 있었다.

텍스트 마이닝을 적용한 한국교통방송제보 비정형데이터의 분석 (Analysis of the Unstructured Traffic Report from Traffic Broadcasting Network by Adapting the Text Mining Methodology)

  • 노유진;배상훈
    • 한국ITS학회 논문지
    • /
    • 제17권3호
    • /
    • pp.87-97
    • /
    • 2018
  • 교통사고 관련 제보는 비정형 데이터로서 교통사고를 유발한 가해자나 피해자의 관점이 아닌, 교통사고 발생 지점과 구간, 시간대에 있었던 타 운전자의 관점에서 생성된 교통정보의 가치를 가지고 있다. 그러나, 비정형 데이터인 교통제보가 빅 데이터로서 교통사고 통계나 교통관련 연구에 활용되지 못하였으나, 텍스트 마이닝 기법을 활용한 본 연구를 통해 비정형의 빅 데이터를 시각화하고 해석하여, 기존의 정형 데이터에서 분석하지 못한 정보를 도출할 수 있었다. 그리고 교통사고 발생으로 인한 도로상 영향을 파악할 수 있었다. 이러한 분석으로 교통제보의 트랜드를 파악하고, 운전자가 제보하는 "도로명", "지점명", "시간대"를 추출하였으며, 교통사고 발생으로 다른 운전자에게 가장 많은 영향을 미치는 지점과 구간의 파악이 가능하였다. 향후 실제 교통사고 데이터와 결합하여 교통제보와의 상관성 분석 등을 통해 비정형 데이터의 활용방안을 모색할 계획이다.

비정형데이터 수집을 통한 드라마 시청률 연관어 분석 (Analysis of drama viewership related words through unstructured data collection)

  • 강선경;이현창;신성윤
    • 한국정보통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1567-1574
    • /
    • 2017
  • 본 논문에서는 드라마의 시청률에 영향을 미치는 연관어 분석을 위해 정형화된 데이터와 비정형화된 데이터를 분석하는 내용이다. 정형화된 데이터 수집은 각 방송사의 드라마정보, 인물정보, 방송정보, 시청률정보라는 4가지 영역에서 총 19가지항목을 수집하였다. 비정형데이터는 각 방송사에서 드라마별로 운영되고 있는 게시판과 방영전 블로그와 방영후 블로그로부터 크롤링기법을 이용하여 수집하였다. 수집된 정형데이터로부터 각 방송사별 4가지 영역별에 따른 차이를 비교한 결과 방송사별 서로 유사한 결과 값을 보이고 있었다. 그리고 각 방송사의 드라마별 게시판과 블로그에서 수집된 비정형데이터로부터 출현빈도의 상관관계 분석을 통해 관련 연관어를 7개 도출하였다. 도출된 연관어는 신뢰성 분석을 통해 이루어졌다.

비정형 데이터의 계층적 군집화를 이용한 범죄 프로파일링 (Criminal Profiling Using Hierarchical Clustering of Unstructured Data)

  • 김용훈;정목동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.335-338
    • /
    • 2016
  • 최근 디지털 정보들은 각종 매체에 저장되어 다양하게 활용되고 있다. 그 중 범죄관련 비정형데이터의 분석과 활용은 범죄수사에 유용한 자료로 활용될 수 있다. 그러나 기존의 범죄통계 자료의 분석 및 활용은 정형데이터를 이용한 제한적 접근에 그치고 있다. 따라서, 본 논문은 수사 자료 중 처리되지 못한 비정형데이터를 분석, 저장, 처리하여, 수사 자료로 활용할 수 있도록 정형데이터화 함으로 범죄 프로파일링에 도움이 될 것으로 기대된다.