A study on detective story authors' style differentiation and style structure based on Text Mining (텍스트 마이닝 기법을 활용한 고전 추리 소설 작가 간 문체적 차이와 문체 구조에 대한 연구)
-
- Journal of Intelligence and Information Systems
- /
- v.25 no.3
- /
- pp.89-115
- /
- 2019
This study was conducted to present the stylistic differences between Arthur Conan Doyle and Agatha Christie, famous as writers of classical mystery novels, through data analysis, and further to present the analytical methodology of the study of style based on text mining. The reason why we chose mystery novels for our research is because the unique devices that exist in classical mystery novels have strong stylistic characteristics, and furthermore, by choosing Arthur Conan Doyle and Agatha Christie, who are also famous to the general reader, as subjects of analysis, so that people who are unfamiliar with the research can be familiar with them. The primary objective of this study is to identify how the differences exist within the text and to interpret the effects of these differences on the reader. Accordingly, in addition to events and characters, which are key elements of mystery novels, the writer's grammatical style of writing was defined in style and attempted to analyze it. Two series and four books were selected by each writer, and the text was divided into sentences to secure data. After measuring and granting the emotional score according to each sentence, the emotions of the page progress were visualized as a graph, and the trend of the event progress in the novel was identified under eight themes by applying Topic modeling according to the page. By organizing co-occurrence matrices and performing network analysis, we were able to visually see changes in relationships between people as events progressed. In addition, the entire sentence was divided into a grammatical system based on a total of six types of writing style to identify differences between writers and between works. This enabled us to identify not only the general grammatical writing style of the author, but also the inherent stylistic characteristics in their unconsciousness, and to interpret the effects of these characteristics on the reader. This series of research processes can help to understand the context of the entire text based on a defined understanding of the style, and furthermore, by integrating previously individually conducted stylistic studies. This prior understanding can also contribute to discovering and clarifying the existence of text in unstructured data, including online text. This could help enable more accurate recognition of emotions and delivery of commands on an interactive artificial intelligence platform that currently converts voice into natural language. In the face of increasing attempts to analyze online texts, including New Media, in many ways and discover social phenomena and managerial values, it is expected to contribute to more meaningful online text analysis and semantic interpretation through the links to these studies. However, the fact that the analysis data used in this study are two or four books by author can be considered as a limitation in that the data analysis was not attempted in sufficient quantities. The application of the writing characteristics applied to the Korean text even though it was an English text also could be limitation. The more diverse stylistic characteristics were limited to six, and the less likely interpretation was also considered as a limitation. In addition, it is also regrettable that the research was conducted by analyzing classical mystery novels rather than text that is commonly used today, and that various classical mystery novel writers were not compared. Subsequent research will attempt to increase the diversity of interpretations by taking into account a wider variety of grammatical systems and stylistic structures and will also be applied to the current frequently used online text analysis to assess the potential for interpretation. It is expected that this will enable the interpretation and definition of the specific structure of the style and that various usability can be considered.
The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.
본고(本稿)시리이즈의 제1보(第一報)에서 우리는 물리(物理), 사회과학(社會科學) 및 공학분야(工學分野)의 12,442명(名)의 과학자(科學者)와 기술자(技術者)에 대한 정보교환활동(情報交換活動)의 78례(例)에 있어서 일반과정(一般過程)과 몇 가지 결과(結果)를 기술(記述)한 바 있다. 4년반(年半) 이상(以上)의 기간(其間)(