Proceedings of the Korea Information Processing Society Conference
/
2002.04b
/
pp.805-808
/
2002
컴퓨터 시스템 및 네트워크에 대한 침입 공격의 방법 중 이미 알려진 형태의 공격에 대해서는 상대적으로 탐지가 용이하나 사용자의 비정상행위는 방법의 다양성 때문에 탐지가 매우 어렵다. 그러나, 사용자의 정상적인 행동은 몇 가지 소수의 형태로 특정 지어질 수 있다. 본 논문에서는 상대적으로 변화가 적은 정상 행위를 신경망으로 Modeling하여 이를 비정상 행위 탐지에 적용하는 기법을 제안한다. 이를 위하여 입력 영역을 지역화 하는 특성을 갖는 RBF(Radial-Basis-Fuction) 신경망에 대한 단일 Class의 학습방법을 제안하고, 이를 이용한 비정상 행위에 대한 공격의 탐지에 대한 적용 방안을 제시한다. 비정상 행위 탐지에 대한 적용 가능성을 검증하기 위하여 사용자가 키보드 입력 유형을 학습하고 이를 이용하여 타인의 ID와 Password를 도용한 경우의 탐지에 적용하였다.
Proceedings of the Korea Information Processing Society Conference
/
2002.11b
/
pp.965-968
/
2002
침입탐지 시스템은 전산시스템을 보호하는 대표적인 수단으로, 오용탐지와 비정상행위탐지 방법으로 나눌 수 있는데, 다양화되는 침입에 대응하기 위해 비정상행위 탐지기법이 활발히 연구되고 있다. 비 정상행위기반 침임탐지 시스템에서는 정상행위 구축 방법에 따라 다양한 침입탐지율과 오류율을 보인다. 본 논문에서는 비정상행위기반 침입탐지시스템을 구축하였는데, 사용되는 대표적인 기계학습 방법인 동등 매칭(Equality Matching), 다층 퍼셉트론(Multi-Layer Perceptron), 은닉마르코프 모델(Hidden Markov Model)을 구현하고 그 성능을 비교하여 보았다. 실험결과 다층 퍼셉트론과 은닉마르코프모델이 높은 침입 탐지율과 낮은 false-positive 오류율을 내어 정상행위로 사용되는 시스템감사 데이터에 대한 정보의 특성을 잘 반영하여 모델링한다는 것을 알 수 있었다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2003.12a
/
pp.179-184
/
2003
컴퓨터를 통한 침입을 탐지하기 위해서 많은 연구들이 오용탐지 기법을 개발하였다. 최근에는 오용 탐지 기법을 개선하기 위해서 비정상행위 탐지 기법에 관련된 연구들이 진행중이다. 본 논문에서는 클러스터링 기법을 응용한 새로운 네트워크 비정상행위 탐지 기법을 제안한다. 이를 위해서 정상 행위를 다양한 각도에서 분석될 수 있도록 네트워크 로그로부터 여러 특징들을 추출하고 각 특징에 대해서 클러스터링 알고리즘을 이용하여 정상행위 패턴을 생성한다. 제안된 방법에서는 정상행위 패턴 즉 클러스터를 축약된 프로파일로 생성하는 방법을 제시하며 제안된 방법의 성능을 평가하기 위해서 DARPA에서 수집된 네트워크 로그를 이용하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.511-513
/
2002
본 논문은 악성 스크립트를 탐지하는 새로운 방법을 제안한다. 정보검색 기법을 이용하여 정상 스크립트들을 기능별로 구분하여 정상 행위를 정의함으로써, 정상 행위에서 벗어나는 경우에 악성이라고 판정한다. 소스 기반의 빠른 검색이 가능하며, 실시간 모니터링을 통한 비정상 스크립트의 탐지가 가능하다. 또한 새로운 악성 스크립트가 생성되는 경우에도 탐지가 가능하다는 장점을 가지고 있다.
The rapid proliferation of wireless networks and mobile computing applications has changed the landscape of network security. Anomaly detection is a pattern recognition task whose goal is to report the occurrence of abnormal or unknown behavior in a given system being monitored. This paper presents an efficient rough set based anomaly detection method that can effectively identify a group of especially harmful internal masqueraders in cellular mobile networks. Our scheme uses the trace data of wireless application layer by a user as feature value. Based on the feature values, the use pattern of a mobile's user can be captured by rough sets, and the abnormal behavior of the mobile can be also detected effectively by applying a roughness membership function considering weighted feature values. The performance of our scheme is evaluated by a simulation. Simulation results demonstrate that the anomalies are well detected by the method that assigns different weighted values to feature attributes depending on importance.
Proceedings of the Korea Information Processing Society Conference
/
2003.05c
/
pp.1579-1582
/
2003
점차 네트워크상의 침입 시도가 증가되고 다변화되어 침입탐지에 많은 어려움을 주고 있다. 시스템에 새로운 침입에 대한 탐지능력과 다량의 감사데이터의 효율적인 분석을 위해 데이터마이닝 기법이 적용된다. 침입탐지 방법 중 비정상행위 탐지는 모델링된 정상행위에서 벗어나는 행위들을 공격행위로 간주하는 기법이다. 비정상행위 탐지에서 정상행위 모델링을 하기 위해 연관규칙이나 빈발에피소드가 적용되었다. 그러나 이러한 기법들에서는 시간요소를 배제하거나 패턴들의 발생순서만을 다루기 때문에 정확하고 유용한 정보를 제공할 수 없다. 따라서 이 논문에서는 이 문제를 해결할 수 있는 시간연관규칙과 분류규칙을 이용한 비정상행위 탐지 모델을 제안하였다. 즉, 발생되는 패턴의 주기성과 달력표현을 이용, 유용한 시간지식표현을 갖는 시간연관규칙을 이용해 정상행위 프로파일을 생성하였고 이 프로파일에 의해 비정상행위로 간주되는 규칙들을 발견하고 보다 정확한 비정상행위 판별 여부를 결정하기 위해서 분류기법을 적용하였다.
The Transactions of the Korea Information Processing Society
/
v.7
no.8
/
pp.2411-2420
/
2000
Far detecting variaus camputer intrusians effectively, many researches have develaped the misuse based intrusian detectian systems. Recently, warks related ta anamaly detectian, which have impraved the drawback .of misuse detectian technique, have been under focus. In this paper, a new clustering algarithm based an support constraint far generating user's narmal activity patterns in the anamaly detectian can praposed. It can grant a user's activity .observed recently ta mare weight than that .observed in the past. In order that a user's anamaly can be analyzed in variaus angles, a user's activity is classified by many measures, and far each .of them user's narmal patterns can be generated. by using the proposed algarithm. As a result, using generated narmal patterns, user's anamaly can be detected easily and effectively.
Proceedings of the Korean Information Science Society Conference
/
1999.10c
/
pp.318-320
/
1999
정보시스템의 보호를 위한 침입탐지의 방법으로 오용탐지와 비정상행위 탐지방법이 있다. 오용탐지의 경우는 알려진 침입 패턴을 이용하는 것으로 알려진 침입에 대해서는 아주 높은 탐지율을 나타내지만 알려지지 않은 침입이나 변형패턴에 대해서는 탐지할 수 없다는 단점이 있다. 반면 비정상행위 탐지는 정상행위 모델링을 통해 비정상패턴을 탐지하는 것으로 알려지지 않은 패턴에 대해서도 탐지할 수 있는 장점이 있는데 국내외적으로 아직까지 널리 연구되어 있지 않다. 본 논문에서는 BSM으로부터 얻은 다양한 정보를 추출하고 이러한 정보를 자기조직화 신경망을 이용하여 축약함으로써 고정된 크기의 순서정보로 변환하는 방법을 제안한다. 이렇게 생성된 고정크기의 순서정보는 비정상행위 탐지에 효과적으로 사용될 수 있을 것이다.
Proceedings of the Korea Information Processing Society Conference
/
2002.04b
/
pp.845-848
/
2002
네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와 행위패턴을 정확히 모델링 할 수 있는 Event 의 생성이 전체성능을 결정하는 중요한 요인이 된다. 또한 공격이나 비정상 행위의 판별을 위해서는 효과적인 탐지모델의 구축이 필요하다. 본 논문은 네트워크기반에서 패킷을 분석해 비정상행위 수준을 관리자에게 보고하는 시스템의 설계에 관한 논문이다. 속성을 생성하고 선택하는 방법으로는 전문가의 경험을 바탕으로 결정하였고, 탐지모델구축은 COBWEB 클러스터링 기법을 사용하였다. 비정상행위 수준을 결정하기 위해 트레이닝 셋에 정상과 비정상의 비율을 두어 클러스터링 이후 탐지모드에서 새로운 온라인 Event 의 비정상 수준을 결정할 수 있게 하였다
Proceedings of the Korea Information Processing Society Conference
/
2002.11b
/
pp.869-872
/
2002
네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.