• Title/Summary/Keyword: 비정상 초음속

Search Result 82, Processing Time 0.023 seconds

Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity (이선형 비선형성을 포함하는 접는 미사일 조종날개의 공탄성 해석)

  • Bae, Jae-Sung;Shin, Won-Ho;Lee, In;Shin, Young-Sug
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.29-35
    • /
    • 2002
  • Aeroelastic characteristics of a deployable missile control fin have been investigated. A deployable missile control fin is modeled by a 2-dimensional typical section. Supersonic Doublet-Point method is used for the computation of supersonic unsteady aerodynamic forces and Karpel's Minimum-State approximation is used for the aerodynamic approximation. Root-locus method and time-integration method are used for the linear and nonlinear flutter analyses. For the nonlinear flutter analysis the deployable hinge is represented by a asymmetric bilinear spring and is linearized by using the describing function method. From the flutter analyses, the effects of nonlinear parameters on the aeroelastic characteristics are investigated.

Heat Transfer on Secondary Injection Surface in Supersonic Flow-field with Various Injection Angle (초음속 유동장내 2차분사 분사각도 변화에 따른 열전달 특성 변화)

  • Song, Ji-Woon;Yi, Jong-Ju;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.321-325
    • /
    • 2008
  • In this paper, heat transfer changes due to the shock/boundary layer interaction were investigated on surfaces where secondary jet are injected. With an infra-red thermography, surface temperature was measured and the measured data was used to obtain the convective heat transfer. Heat transfer is enhanced with increment of momentum ratio. And normal injection case has a higher heat transfer value than that of 15 degrees inclined injection case. Secondary injection momentum ratio and injection angle affect the surface heat transfer distribution.

  • PDF

NUMERICAL INVESTIGATION ON THE SAFE SUPERSONIC AIR-LAUNCHING ROCKET SEPARATION FROM THE MOTHER PLANE (안전한 초음속 공중발사를 위한 삼차원 로켓 주위의 모선분리 유동 해석)

  • Ji Y.M.;Lee J.W.;Park J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.255-259
    • /
    • 2005
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket from the mother plane. Three-dimensional Euler and Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from two cases of mother plane configuration: one is an idealized ogive-cylinder body and the other is a real F-4E Phantom. The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

Study on the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파의 히스테리시스 현상에 관한 연구)

  • Lee, Ik In;Han, Geu Roo;Kim, Teo Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • Hysteresis phenomena are often encountered in a wide variety of fluid flow systems used in industrial and engineering applications. Hence, in recent years, a significant amount of research been focusing on clarifying the physics of the flow hysteresis appearing during the transient change of the pressure ratios and influencing the performance of the supersonic wind tunnel. However, investigations on the hysteresis phenomenon, particularly when it occurs inside the supersonic wind tunnel, are rare. In this study, numerical simulations were carried out to investigate the hysteresis phenomena of the shock waves encountered in a supersonic wind tunnel. The unsteady and compressible flow was analyzed with an axisymmetric model, and the N-S equations were solved by using a fully implicit finite volume scheme. The optimal pressure ratio was determined from the hysteresis curves, and the results can be utilized to operate the wind tunnel efficiently.

SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS (비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석)

  • Kim Dong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.

Control of the Pressure Oscillation in a Supersonic Cavity Flow Using a Sub-cavity (Sub-cavity를 이용한 초음속 공동유동의 압력진동 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.310-313
    • /
    • 2006
  • The present study aims at investigating the effectiveness of a new passive cavity flow control technique, sub-cavity. The characteristics of cavity flow oscillation with the device are compared with those with other control techniques tested previously, including a triangular bump and blowing jet. In the computation, the three-dimensional, unsteady Navier-Stokes equations governing the supersonic cavity flow are solved based on an implicit finite volume scheme spatially and multi-stage Runge-Kutta scheme temporally. Large eddy simulation (LES) is carried out to properly predict the turbulent features of cavity flow. The present results show that the pressure oscillation near the downstream edge dominates overall time-dependent cavity pressure variations, and the amplitude of the pressure oscillation can be reduced in the presence of a sub-cavity.

  • PDF

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part II : Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part II : 반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.879-888
    • /
    • 2009
  • Unsteady three-dimensional reacting flowfield generated by transverse hydrogen injection into a supersonic mainstream is numerically investigated using DES and finite-rate chemistry model. Comparisons are made with experimental results to investigate the turbulent reacting flow physics. The numerical OH distribution describes well the experimental OH-PLIF result, while the numerical ignition delay time shows some disparity due to the restricted available experimental data. The intermittency phenomena are identified by the comparative analysis between RANS and DES. Those effects are also quantified by the temperature distributions along streamlines and superimposed OH mass fraction along with time.

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part I : Non-Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part I : 비반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.863-878
    • /
    • 2009
  • Unsteady three-dimensional flowfield generated by transverse fuel injection into a supersonic mainstream is simulated with a DES turbulence model. Comparisons are made with experimental results in terms of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the large eddy structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly over-predict the eddy formation frequency. The large eddy structures are generated as the counter-rotating vortices are detached alternately in the upstream recirculation region.

Passive Control of the Supersonic Cavity Pressure Oscillations Using Porous Vertical Barrier (수직 다공벽을 이용한 초음속 공동 압력진동의 피동제어)

  • Kang, Min-Sung;Kwon, Joon-Kyeong;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • A computational study has been performed out to evaluate the effect of a vertical porous barrier on the pressure oscillations in a supersonic cavity. The porous barriers with different perforations were vertically installed into a rectangular cavity at Mach numbers 1.50, 1.83 and 2.50. TVD finite difference MUSCL scheme was employed to solve the two-dimensional, unsteady, compressible Navier-Stokes equations. The present vertical porous barrier considerably altered the characteristics of the time-dependent shear layers that occur at the upstream edge of cavity and remarkably reduced the pressure oscillations inside the supersonic cavity. The present results showed that the effectiveness of passive control using the present porous vertical barrier is dependent on Mach number and the perforation of the porous barrier.