• 제목/요약/키워드: 비정상연소

검색결과 92건 처리시간 0.016초

액적 배열의 증발과 착화에 관한 수치해석적 연구 (Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets)

  • 김충익;송기훈
    • 한국화재소방학회논문지
    • /
    • 제13권1호
    • /
    • pp.37-47
    • /
    • 1999
  • 부유중인 분진의 화재 및 용기 또는 파이프의 미세한 균열에서 비산되는 가연성 액체의 분무화재의 위험성은 착화후의 고속 확산과 높은 열방출율로 인하여 매우 높은 것으로 알려졌다. 이에 대한 연구는 주로 실험적으로나 또는 거시적인 관점의 해석으로 제한되어 왔다. 본 연구는 미시적인 관점의 해석으로서 분진 및 분무를 가연성 미세 액적으로 가정하여 그의 증발과 착화에 대하여 연구하였다. 첫 단계로서 일열의 액적 배열을 계산영역으로 하여, 비정상 이차원 보존방정식들을 적용하였다. 수치해석은 일반화된 비직교 좌표계를 사용하였고, 화학반응은 Arrhenius의 법칙에 의하여 반응속도가 제어되는 일단계 반응을 고려하였다. 계산결과는 액적 주위의 온도와 반응물질의 농도분포를 시간에 따라 보여준다. 주위의 산소가 증발하는 액적의 연료와 섞이기 시작하고 착화 조건에 다다르면, 급격한 발열반응이 예혼합된 가스로부터 일어나기 시작한다. 최대온도 영역은 점차적으로 액적 표면으로 이동하며 최대온도는 착화이후 급격히 상승한다. 연료와 산소의 농도는 최대온도 영역 근처에서 최소값을 보인다. 따라서 착화순간에는 예혼합연소의 양상을 띠는 것으로 나타났다. 이후에는 예혼합 가스의 소멸로 확산연소의 양상을 띠게 된다. 액적간의 거리는 중요한 요소로서 멀리 떨어져 있는 경우부터 액적간의 거리가 가까워지면 착화지연 시간이 줄여들어 착화가 빨리 일어나는 것으로 관찰되었다. 또한 착화 후에는 최대온도 영역이 일열의 중심선으로부터 멀어지는 것으로 나타났는데 이것은 중심부근의 산소가 먼저 소모되고 외부로부터의 산소공급도 화염에 의해 차단되어 나타나는 현상이다. 이번 연구로 미세적인 착화현상에 대한 이해를 높이게 되었고 추후 복잡한 배열에 대한 연구도 가능할 것이다.

  • PDF

7 tonf 급 소형 액체로켓엔진 조립 체계 연구 (Research on the Assembling Process of 7 tonf Class Small Liquid Rocket Engines)

  • 문인상;문일윤;정은환;박순영
    • 항공우주시스템공학회지
    • /
    • 제11권4호
    • /
    • pp.48-53
    • /
    • 2017
  • 액체로켓엔진은 연소기, 터보펌프, 가스발생기, 각종 밸브 및 배관, 조인트, 오리피스, 튜브, 하니스, 센서 등이 결합되어있는 매우 복잡한 시스템이다. 대부분의 액체로켓엔진 부품은 IT(ISO Tolerance) 기준으로 6등급 이상의 높은 정밀도를 요구하며 정상운용 전후 시동과 종료 등과 같은 비정상 시의 응답에도 대응해야한다. 따라서 엔진 시스템 및 부품은 넓은 영역에서 안정적으로 동작할 수 있도록 설계되어야하며 조립은 이러한 설계철학을 충실히 반영하여야 한다. 엔진 설계 시에는 부품 간에 물리적 혹은 기능적 간섭이 없도록 공간배치를 해야 하며 조립 중 조립성과 조립 후 유지보수의 효율성까지도 고려되어야 한다. 특히 양산품이 아닌 개발 단계에서는 조립 중 부품 간 공차의 누적, 각종 구성품의 비정렬, 부품 인터페이스 간의 불일치 등이 발생할 수 있다. 즉, 엔진조립공정은 개발 중 내재되어있는 각종 위험이 현실화 되는 위기 혹은 예상치 못한 사건(incident)이 발생하기 쉬운 작업이다. 그러므로 조립 중 사건이 발생했을 경우를 대비한 신속한 대응시스템이 구비되어야한다. 이 연구에서는 위에서 언급한 사항들의 기본적 대응방법과 한국형발사체에 탑재되는 7 tonf 급 엔진의 실제 조립공정을 다루었다.