• 제목/요약/키워드: 비정상성 빈도해석모형

검색결과 55건 처리시간 0.034초

지진발생빈도-크기 분석을 위한 Poisson-Pareto 분포 모형과 연계한 지진해일 위험도 평가 기법 개발 (A Development of Tsunami Risk Assessment Model Using a Poisson-Pareto Distribution for Earthquake Frequency and Magnitude)

  • 김관혁;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.330-330
    • /
    • 2017
  • 최근 우리나라 주변에 잦은 지진으로 인한 재해위험도 증가 우려가 커지고 있다. 국내 외에서 지진해일 위험도 평가는 시나리오를 기준으로 수치해석을 수행하고 이들 결과를 활용하는 절차로 수행된다. 그러나 위험도 평가는 하중조건 즉, 지진해일을 발생시키는 지진의 발생빈도 및 크기를 종합적으로 고려한 확률 계산이 우선적으로 요구되나, 기존 분석 절차에서는 고려가 되지 않거나 상대적으로 간략화 되어 진행되고 있다. 이러한 점에서 본 연구에서는 과거 우리나라 주변에 지진 및 지진해일 자료, 수치해석 모형 결과를 활용하여, 지진의 규모와 발생빈도를 종합적으로 고려할 수 있는 지진해일 위험도 평가 방법을 수립하고자 한다. 본 연구에서는 첫째, 지진 위험도 평가를 위해서 Poisson-Pareto 분포를 이용하였다. 둘째, 지진발생 위치 및 크기를 고려한 지진해일 위험도 평가 모형을 개발하였다. 셋째, 지진발생 위험도 및 지진해일 위험도를 통합한 해석 모형을 개발하고자 하며, 본 연구애서 제시하는 모든 해석 절차는 매개변수의 불확실성을 고려할 수 있도록 Bayesian 해석기법을 도입하여 진행하였다.

  • PDF

다양한 규모매개변수를 이용한 비정상성 Gumbel 모형의 비교 연구 (Comparison Study on the Various Forms of Scale Parameter for the Nonstationary Gumbel Model)

  • 장한진;김수영;허준행
    • 한국수자원학회논문집
    • /
    • 제48권5호
    • /
    • pp.331-343
    • /
    • 2015
  • 비정상성 빈도해석을 위해 개발된 비정상성 확률분포 모형들은 대부분 매개변수에 시간항을 포함하는 형태로 정의된다. 이 중에서도 우리나라에 널리 사용되고 있는 Gumbel 모형에 대해 살펴보면, 비정상성 Gumbel 모형의 위치 및 규모매개변수는 시간에 대해 선형(linear) 및 지수(exponential) 함수의 관계를 보이는 형태로 가정한다. 규모매개변수의 지수함수의 형태는 음(-)의 값이 추정되는 것을 방지하기 위해 제안되어 널리 사용되고 있으나 이로 인해 확률수문량이 과다산정되는 문제가 발생하기도 한다. 본 연구에서는 이러한 문제를 해결하기 위해 비정상성 Gumbel 모형의 규모매개변수의 다양한 형태를 비교하고자 한다. 이를 위해 비정상성 Gumbel 모형의 규모매개변수를 지수함수, 선형, 로그 형태로 가정하여 비교하였다. 각 모형의 매개변수의 추정은 최우도법을 적용하였고 규모매개변수의 형태별 정확도 비교를 위해 모의실험을 수행하였으며, 실제 자료에 대한 적용으로 자료기간 30년 이상을 보유하면서 경향성을 가지는 강우량 자료들을 대상으로 비정상성 빈도해석을 수행하였다. 그 결과, 지수함수 형태를 가정한 규모매개변수를 가지는 비정상성 Gumbel 모형이 가장 작은 오차를 가지는 것으로 분석되었다.

기상인자를 활용한 시단위 극치강우량 전망 (An Hourly Extreme Rainfall Outlook Using Climate Information)

  • 김용탁;홍민;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.14-14
    • /
    • 2018
  • 세계의 여러 국가에서 과거 발생했던 강수의 통계적 특성에서 벗어나는 극치사상이 빈번하게 관측되고 있다. 이와 같은 현상에 가장 큰 영향을 미치고 있는 요인중 하나는 지구온난화이며 실제 산업화 이후 온실가스의 증가와 더불어 극한 기상현상의 발생 빈도가 증가하였다. 현재 예상치 못한 수문사상의 발생으로 인해 수자원관리에 있어서 많은 어려움을 겪고 있으며, 특히 호우사상은 막대한 인명 및 사회적 피해를 야기하고 있다. 우리나라의 경우 계절적 특징으로 여름철에 강수가 집중되는 양상을 보이고 있으며 따라서 여름철 강수량을 예측하여 호우에 대한 대비책을 마련해야한다. 계절강수 예측은 수문, 산림, 식품, 등을 포함한 사회 경제적 파급 효과가 매우 크지만 아직 신뢰성 있는 예측은 어려운 상태이다. 또한, 발생 강도와 빈도가 큰 극한 강우는 주로 짧은 시간에 걸쳐 발생하기 때문에 예측하기가 어렵다. 최근 다양한 분야의 연구에서 AO, NAO, ENSO, PDO등과 같은 외부적 요인이 수문학적 빈도를 변화시킨다고 알려지고 있어 본 연구에서는 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 토대로 외부 기상인자에 의한 변동성을 고려할 수 있는 계절강수량 예측모형을 구축한 후 산정된 결과를 입력 자료로 하여 극치강수량을 추정할 수 있는 비정상성 Four - Parameter (4P)-Beta분포를 이용한 알고리즘을 개발하여 직접적으로 일단위 이하의 극치강수량을 상세화 시킬 수 있는 모형으로 확장하여 이를 통해 기상변동성을 다양한 시간규모에서 고려하기 위한 정보로 활용하고자 하였다.

  • PDF

앙상블 경험적 모드분해법을 활용한 북한지역 극한강수량 전망 (Prospect of extreme precipitation in North Korea using an ensemble empirical mode decomposition method)

  • 정진홍;박동혁;안재현
    • 한국수자원학회논문집
    • /
    • 제52권10호
    • /
    • pp.671-680
    • /
    • 2019
  • 기후변화에 따른 수문순환 요소들의 변화로 인해 미래에는 전 세계적으로 수문사상의 규모 및 빈도가 증가할 것이라는 많은 선행연구들이 있다. 하지만 북한지역의 미래 강수량에 대한 정량적 연구와 평가는 미비한 실정이다. 북한지역 역시 우리나라와 마찬가지로 극한강수에 따른 피해가 발생될 것으로 예상되기 때문에 북한지역에 관한 연구는 지속적으로 진행되어야 한다. 따라서 본 연구에서는 정상성 및 비정상성 빈도해석을 통해 북한지역의 미래(2020-2060년) 극한강수를 산정하고 현재기후(1981-2017년)와 비교 분석하였다. 비정상성 빈도해석은 RCP기후변화시나리오에 따라 모의된 HadGEM2-AO모델의 외부인자(JFM(1-3월), AMJ(4-6월), JAS(7-9월), OND(10-12월)의 평균 강수량)를 고려하여 수행하였다. 북한지역 극치 강우 사상과 유사한 경향을 보이는 외부인자 선정을 위해 앙상블 경험적 모드분해법을 활용하여 연 최대 강우자료의 잔차를 추출하였다. 추출된 잔차와 외부인자 사이의 상관성분석을 실시하였다. 8개 지점(강계, 삼지연, 장진, 양덕, 함흥, 신포, 장전, 신계)에서 3개의 외부인자(AMJ, JAS, OND)가 경향이 있음을 확인하였다. 선정된 외부인자를 고려하여 비정상성 GEV모형을 구축하고 빈도해석을 수행하였다. 그 결과, RCP4.5에서는 8개 지점 중 4개 지점이 현재기후 대비 미래극한강수량이 감소하는 경향을 보였고 3개 지점이 증가하는 것으로 나타났다. 반면에 RCP8.5에서는 2개 지점이 감소하는 경향을 5개 지점이 증가하는 것으로 분석되었다.

기상인자와 비정상성 빈도해석 모형을 이용한 낙동강유역의 계절강수량 전망 (Seasonal Rainfall Outlook of Nakdong River Basin Using Nonstationary Frequency Analysis Model and Climate Information)

  • 권현한;이정주
    • 한국수자원학회논문집
    • /
    • 제44권5호
    • /
    • pp.339-350
    • /
    • 2011
  • 본 연구에서는 Bayesian 통계기법을 이용한 비정상성 빈도해석모형을 토대로 외부 기상인자에 의한 변동성을 고려할 수 있는 계절강수량 예측모형을 구축하였으며, 낙동강유역내의 10개 관측소에서 관측된 37년간의 강수량 자료를 이용하여 연도별 여름강수량을 추출하고 이들 관측소의 여름강수량에 물리적인 영향을 미치는 기상인자로서 SST(sea surface temperature)와 OLR(outgoing longwave radiation)을 공간상관성을 검토하여 선정하였다. 모형의 적합성을 검토하기 위해 2010년 여름강수량 사후 확률분포의 중앙값과 관측치를 비교하였으며, 그 결과 각각 858.2mm와 888.1mm로, 이는 구축된 모형이 적절하게 여름강수량을 모의하고 있음을 보여준다. 2010년 겨울 SST 관측 값과, 예년 평균값으로 가정한 2011년 6월 OLR을 이용하여 2011년 여름강수량을 예측하였다. 예측된 2011년 여름강수량은 967.7mm로, 확률적으로 예년 여름강수량의 평균인 680mm를 상회할 확률이 92.9% 이상인 것으로 나타났으며, 또한 50년 빈도에 해당하는 여름강수량을 추정한 결과, 50년 빈도 여름강수량 1400mm를 상회할 확률도 약 73.7%인 것으로 분석되었다.

극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석 (Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis)

  • 이정주;권현한;김태웅
    • 대한토목학회논문집
    • /
    • 제30권4B호
    • /
    • pp.389-397
    • /
    • 2010
  • 본 논문에서는 극치수문자료의 경향성 분석 개념을 소개하고 이를 빈도해석과 연계시켜 해석하는 방법론을 제시하고자 Gumbel 극치분포를 기반으로, 시간변화에 의한 수문빈도 특성 변화를 모의할 수 있는 Bayesian 모형을 구성하였다. 사후분포의 매개변수는 깁스표본법에 의한 Markov Chain Monte Carlo Simulation을 통해 추정하였으며, 이를 통해 경향성을 고려한 확률강우량과 불확실성 구간을 추정하였다. 또한 경향성을 고려한 확률강우량이 현재 알려진 확률강우량을 초과할 확률을 통해 동적 위험도 해석과정을 소개하였으며, 현재의 경향성에 대해서 시간에 따라 연속으로 추정된 확률밀도함수를 비교하여 수문학적 위험도가 증가할 수 있음을 모의결과를 통해 확인하였다. 이와 더불어 단순히 경향성의 존재여부를 확인하는데 그치지 않고 사후분포를 통해서 통계적 추론을 수행함으로써 경향성에 대한 통계학적인 유의성을 정량적으로 평가할 수 있었다.

앙상블 경험적 모드분해법을 활용한 비정상성 확률분포형의 매개변수 추세 분석에 관한 연구 (A study on a tendency of parameters for nonstationary distribution using ensemble empirical mode decomposition method)

  • 김한빈;김태림;신홍준;허준행
    • 한국수자원학회논문집
    • /
    • 제50권4호
    • /
    • pp.253-261
    • /
    • 2017
  • 최근 수문자료에서 비정상성 현상들이 관측됨에 따라 비정상성 빈도해석에 관한 연구들이 활발하게 진행되고 있다. 시간에 따라 변화하는 통계적 특성을 고려하기 위하여 다양한 형태의 비정상성 확률분포형이 제시되고 있으며, 비정상성 매개변수를 추정할 수 있는 다양한 방법들이 연구되고 있는 추세이다. 본 연구에서는 앙상블 경험적 모드분해법을 이용한 비정상성 Gumbel 분포형의 매개변수 추정방법을 제시하고 기존에 비정상성 매개변수 추정방법으로 주로 사용되어온 최우도법과 비교해보고자 하였다. 국내 자료의 적용을 위하여 기상청 지점의 다양한 지속기간에 대해 경향성이 나타나는 연 최대치 강우자료를 사용하였다. 적용 결과 선형적 경향성을 나타내는 자료에 대해서는 두 가지 방법 모두 적절한 모형을 선정하였으나, 2차 곡선 형태의 경향성이 존재하는 자료에 대해서는 앙상블 경험적 모드분해법의 경우에만 이러한 경향성을 반영하는 비정상성 Gumbel 모형을 선정하였다.

도시유역에 적합한 강우의 시간분포 선정 및 기후변화 영향분석 (A Selection of Rainfall Time Distribution in Urban stream and Analysis of Climate Change Effect)

  • 문영일;손찬영;장명식;윤선권
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.278-278
    • /
    • 2011
  • 최근 우리나라는 기후변화 등으로 국지성호우가 발생하여 수공구조물의 피해 규모가 점점 커지고 있는 실정이다. 따라서 본 연구에서는 서울지점의 시자료를 이용하여 비정상성 강우빈도해석을 함으로써 기후변화를 고려한 확률강우량을 산정하였으며, 여러 시간분포방법을 비교, 분석하여 우이천유역과 같은 도시 하천의 강우분포 및 지형특성에 알맞은 강우의 시간분포 방법을 선정하고자 하였으며, 도시유출모형인 SWMM을 이용하여 비시나리오기반 기후변화에 따른 향후(2020~2030년) 재현기간 50년 빈도의 첨두유출량을 예측하였다. 분석결과 2020년의 경우 지속시간 1시간의 경우 Yen-Chow방법이 393.02CMS로 가장 높은 첨두 유출량을 보였으며, 지속시간 2시간, 3시간의 경우 Mononobe방법이 439.8149CMS, 503.5989CMS로 가장 높은 첨두 유출량을 나타내었다. 또한 2030년의 경우 지속시간 1시간의 경우 Yen-Chow방법이 416.75CMS로 가장 높았으며, 지속시간 2시간, 3시간의 경우 Mononobe방법이 470.13CMS, 533.7CMS로 가장 높은 첨두 유출량을 나타내었다.

  • PDF

강우자료의 비정상성을 고려한 재현기간 변화에 관한 연구 (A Study on the Changes of Return Period Considering Nonstationarity of Rainfall Data)

  • 신홍준;안현준;허준행
    • 한국수자원학회논문집
    • /
    • 제47권5호
    • /
    • pp.447-457
    • /
    • 2014
  • 본 연구에서는 초과확률 또는 비초과확률이 시간에 따라 변화한다는 비정상성을 가정하여 재현기간 산정에 대한 연구를 수행하였다. 비정상성을 고려한 2가지 재현기간 산정 방법에 대해 검토하고 비정상성 Gumbel 모형을 이용한 빈도해석을 수행하여 초과확률및 비초과확률을 구한 뒤비정상성을 고려한 재현기간 정의에따른 우리나라 재현기간의 변화에 대해서 살펴보았다. 적용 대상으로는 자료기간 30년 이상을 보유하면서 일 강우 자료의 경향성이 나타나는 서귀포, 인제, 제천, 구미, 문경, 거창 등 6개 지점을 선정하였다. 적용결과 비정상성을 고려한 재현기간 산정 시 기존의 재현기간 산정방법과는 재현기간이 다르게 산정됨을 알 수 있었고, 재현기간이 커질수록 정상성 가정하의 재현기간과 비정상성 가정하의 재현기간 값의 차이가 더 커지는 것으로 나타났다. 또한 비정상성을 고려한 재현기간의 2가지 정의 중 기대 대기시간(expected waiting time) 정의에 의한 방법이 기대 초과사상 수(expected number of exceedance event) 정의에 의한 방법보다 작은 재현기간이 산정 되었다.

앙상블 경험적 모드분해법을 이용한 기상인자와 우리나라 극치강우의 장기경향성간의 상관성 분석 (Correlation Analysis Between Climate Indices and Long-Term Trend of Extreme Rainfall using EEMD)

  • 김한빈;주경원;김태림;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.230-230
    • /
    • 2019
  • 대규모순환패턴과 같은 기후시스템에서의 상태와 변화를 정량화하여 나타낸 기상인자는 수문기상학적 변수와 밀접한 연관이 있는 것으로 알려져 있으며, 이에 따라 비정상성 빈도해석의 수행에 있어서 확률분포모형의 매개변수에 대한 공변량으로 널리 활용되고 있다. 본 연구에서는 비정상성 강우빈도해석 시 매개변수의 공변량으로 우리나라의 극치강우의 장기경향성을 잘 반영할 수 있는 기상인자를 선정하고자 한다. 먼저, 시계열자료를 주기성을 가지는 내재모드함수와 장기경향성을 나타내는 잔여값으로 분해할 수 있는 앙상블 경험적 모드분해법을 이용하여 우리나라 전역에 분포된 61개 지점에서 관측된 연 최대치 강우자료의 평균 및 분산에 대한 잔여값을 추출하였다. 다음으로 11개의 월 단위 기상인자에 대한 계절별 연 평균 시계열과 추출된 평균 및 분산의 잔여값과의 상관계수를 산정하였다. 그 결과, 11개의 기상인자 중 Atlantic Meridional Mode (AMM), Atlantic Multi-decadal Oscillation (AMO), North Atlantic Oscillation (NAO)가 우리나라 연 최대치 강우자료의 평균 및 분산에 대한 장기경향성과 높은 상관성이 있는 것으로 나타났다. 계절적으로는 AMM과 AMO의 경우 이전 년도 가을철 평균이 전 지점 평균 약 0.6, NAO는 이전 년도 여름철 평균이 전 지점 평균 0.3 이상의 유의한 상관계수를 가지는 것으로 나타났다.

  • PDF