• Title/Summary/Keyword: 비접촉 탐상

Search Result 19, Processing Time 0.021 seconds

Nondestructive Evaluation Using Electromagnetic-Acoustic Transducer (Electromagnetic-Acoustic Transducer를 이용한 비파괴평가)

  • Ahn, Bong-Young;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.278-284
    • /
    • 1997
  • EMAT는 비접촉으로 초음파를 송수신 할 수 있는 탐촉자로서 시험체와 탐촉자간의 접촉을 위한 매개 물질이 필요치 않으므로, 움직이고 있는 물체에 초음파탐상법을 적용하고자 하는 분야와 초음파의 속도를 정밀하게 측정하고자 하는 분야에 주로 응용된다. 구체적으로는 길이가 긴 튜브류의 결함 탐상, 용접중인 재료의 용접상태 감시, 기차바퀴 및 레일의 결함 탐상, 고온상태인 재료의 결함 탐상 등이 비접촉 특성을 이용하여 적용될 수 있는 분야이며, 재료의 집합조직 및 소성이방성의 측정, 재료의 미세조직 및 기계적 강도의 예측, 그리고 잔류응력의 측정 등이 정밀한 초음파속도 및 감쇠의 측정으로부터 적용될 수 있는 분야이다. EMAT가 일반적인 접촉식초음파탐상법에 비하여 특별한 분야에의 응용에 큰 장점을 가지고 있지만, 낮은 에너지 전환효율, 넓은 불감영역, 그리고 사용주파수의 한계 등의 문제를 가지고 있기 때문에 기존의 접촉식 방법의 적용이 용이한 분야에의 적용은 필요하지 않다. 그러나 특별한 목적과 용도에의 적용 필요성이 생길 경우에는 적절한 연구를 통하여 알맞은 탐촉자를 제작하고 탐상 방법을 개발함으로서 본래의 목적에 알맞은 탐상이 수행될 수 있다.

  • PDF

Review of Non-Destructive Evaluation Technologies for Rail Inspection (철도 레일의 결함 검출을 위한 비파괴탐상 기술)

  • Han, Soon-Woo;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.398-413
    • /
    • 2011
  • For railway safety, it is very important to detect damages of rails at their early stage because any undetected damage in a rail can break the rail and cause a serious railway accident. In this paper, several NDT applicable to rail inspections are described. Major damage types in rails are discussed first and the rail inspection technology using conventional piezoelectric ultrasonic transducers, which is widely adopted for damage detection of rails, is explained. Other NDT being researched or tested for rail inspection are also discussed as complementary technologies to the concurrent contact type ultrasonic inspection. Characteristics of each rail inspection technologies are evaluated in order to provide requirements for future development of a new rail inspection method.

Eddy Current NDT for Detection of Defect on Ferromagnetic Material (강자성체 구조물의 표면결함검출을 위한 와전류탐상 비파괴검사)

  • Lee Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.49-52
    • /
    • 2002
  • 본 논문에서는 강자성체 물질을 사용하는 구조물들에 발생되는 결함을 와전류탐상을 이용하여 검출하기 위한 비파괴검사방법에 대하여 제시하였다. 와전류탐상은 전자기비파괴검사방법으로 초음파탐상법과 같은 방법에 비교하여 비접촉식이며 고속으로 검사가 가능하다는 장점이 있다. 본 연구에서 사용되는 매질인 강자성체의 경우 비자성체에 비하여 표피효과에 의한 침투깊이가 얇기 때문에 강자성체를 위한 주파수를 별도로 선정하여야 한다. 또한 고속으로 움직이는 경우 속도기전력에 의한 효과를 고려하여야 한다. 본 연구에서는 와전류센서를 제작하여 실제 강자성체에 적용하는 경우 어떠한 특성을 나타내는가에 대하여 고찰하였다.

  • PDF

Internal Defection Evaluation of Spot Weld Part and Carbon Composite using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상기법을 이용한 스폿용접부 및 탄소복합체의 내부 결함평가)

  • Kwak, Nam-Su;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6432-6439
    • /
    • 2014
  • The NAUT (Non-contact Air coupled Ultrasonic Testing) technique is one of the ultrasonic testing methods that enables non-contact ultrasonic testing by compensating for the energy loss caused by the difference in acoustic impedance of air with an ultrasonic pulser receiver, PRE-AMP and high-sensitivity transducer. As the NAUT is performed in a state of steady ultrasonic transmission and reception, testing can be performed on materials of high or low temperatures or specimens with a rough surface or narrow part, which could not have been tested using the conventional contact-type testing technique. For this study, the internal defects of spot weld, which are often applied to auto parts, and CFRP parts, were tested to determine if it is practical to make the NAUT technique commercial. As the spot welded part had a high ultrasonic transmissivity, the result was shown as red. On the other hand, the part with an internal defect had a layer of air and low transmissivity, which was shown as blue. In addition, depending on the PRF (Pulse Repetition Frequency), an important factor that determines the measurement speed, the color sharpness showed differences. With the images obtained from CFRP specimens or an imaging device, it was possible to identify the shape, size and position of the internal defect within a short period of time. In this paper, it was confirmed in the above-described experiment that both internal defect detection and image processing of the defect could be possible using the NAUT technique. Moreover, it was possible to apply NAUT to the detection of internal defects in the spot welded parts or in CFRP parts, and commercialize its practical application to various fields.

Automatic Noncontact Ultrasonic Inspection Technique (비접촉식 초음파탐상방법 자동화 기술)

  • Kim, Y.G.;Ahn, B.Y.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.25-31
    • /
    • 1994
  • A system for EMAT, which generates ultrasound by electro-magnectic forces and performs nondestructive testing in noncontact, was established. By linking it with a 3 axis scanning system and a data acquisition and processing system the automation of EMAT testing was attempted. A EMAT sensor was fabricated and the directivity pattern of it was measured. To be suitable automation, it has a transmitter and a receiver in one case and the main beam direction of it can be controlled by the frequency of driving signal. A program which controls the EMAT system, the 3 axis scanner and the data acquisition and processing system was developed. It also processes acquired data and displays the processing results. IBM-PC/AT compatible PC was used as main controller and the stratage of the program is emulation of real devices on the PC monitor. To provide the performance of the established EMAT system, two aluminium blocks containing artificial flaws and a welded aluminium block were tested. The result of the tests were satisfactory.

  • PDF

The Evaluation of Surface Crack in Paramagnetic Material by FEF Technique (FEF 탐상법을 이용한 상자성체 표면결함 평가)

  • Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.532-537
    • /
    • 2004
  • FEF(Focused Electromagnetic Field) technique was newly developed that is based on the induction principle exciting electromagnetic field. The technique consists of an induction wire and a sensor for detecting electromagnetic field, and is applied in a non-contact mode. In this study, the technique was applied to the evaluation of EDM slits in some conductive materials - aluminum alloy, stainless steel and Inconel alloy. The voltage in the non-defect region is depended upon the measurement lift-off. The voltage signals on defects are measured with peak values, and the peak values changed with the depth of defects. The voltage distributions for all conductive materials are the same trend.

Reliability Evaluation of Aircraft Brake Disk using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상 기법을 이용한 항공기 브레이크 디스크의 신뢰성 평가)

  • Kwak, Nam-Su;Kim, Jae-Yeol;Gao, Jia-Chen;Park, Dae-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.36-43
    • /
    • 2016
  • Carbon fiber-reinforced silicon carbide (Cf-SiC) and SiC / SiC composites have high thermal conductivity, and excellent corrosion and wear resistance, a low coefficient for thermal expansion and are lightweight. This is why they are commonly used in parts of the aerospace industry to develop an aircraft thrust deflector, jet vane, combustion chamber, elevens, body flap, and a shingle. So, understanding how this state-of-the-art Cf-SiC affects both internal and external crack detection and determining issues during the manufacturing process of composite materials, should be evaluated according to valuation techniques in the external environment. In this paper, we apply a non-contact air ultrasonic technique of non-destructive testing techniques to perform a study on internal defect detection identification and assessment of carbon-fiber reinforced silicon carbide composites to perform basic research and applied research.

GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe (강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구)

  • Park, Jeong Won;Park, Jae Ha;Song, Sung Jin;Kim, Hak Joon;Kwon, Se Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.483-489
    • /
    • 2016
  • The typical methods used for inspecting ferromagnetic pipes include the ultrasonic testing (UT) contact method and the following non-contact methods: magnetic flux leakage (MFL), electromagnetic acoustic transducers (EMAT), and remote field eddy current testing (RFECT). Among these methods, the RFECT method has the advantage of being able to establish a system smaller than the diameter of a pipe. However, the method has several disadvantages as well, including different sensitivities and difficult-to-repair coil sensors which comprise its array system. Therefore, a giant magneto-resistance (GMR) sensor was applied to address these issues. The GMR sensor is small, easy to replace, and has uniform sensitivity. In this experiment, the GMR sensor was used to measure remote field and defect signal characteristics (in the axial and radial directions) in a ferromagnetic pipe. These characteristics were measured in an effort to investigate standard defects at changing depths within a pipe. The results show that the experiment successfully demonstrated the applicability of the GMR sensor to RFECT signal detection in ferromagnetic pipe.