• Title/Summary/Keyword: 비접촉 겹침 이음

Search Result 4, Processing Time 0.024 seconds

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.

Effect of Flexural Performance on U-Shaped Precast Concrete Beams with Noncontact Lapped Splice (비접촉 겹침 이음된 프리캐스트 U형 보의 휨성능에 미치는 효과)

  • Ha, Sang-Su;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.119-128
    • /
    • 2008
  • In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-shaped PC beam. To evaluate the performance for noncontact lapped splice, experimental and analytical works were conducted. Major variables for tests are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. Analytic research was performed nonlinear finite element method. Analytic research focused on crack pattern, load-deflection curve, comparison of internal force, evaluation of ductility strains of reinforcement bar. Results of experimental and analytical works show that the these variables has much influence on flexural strength and ductility, and joint behavior.

Analytical Study on Splice Performances with the Vertical Noncontact Lapped of Reinforcing Bars (수직으로 비접촉 겹침이음된 철근의 이음성능에 관한 해석적 연구)

  • Lee Ho-Jin;Kim Seung-Hun;Ha Sang-Su;Moon Jeong-Ho;Lee Li-Hyung;Lee Yong-Taeg
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.171-174
    • /
    • 2005
  • In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-beam. To evaluate the performance for noncontact lapped splice, analytical works were conducted. Major variables for FEM analysis are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. The results of this study show thar the these variables has much influence on strength and deformation of lapped joint.

  • PDF

Prediction of Fretting Fatigue Life for Lap Joint Structures of Aircraft (항공기 겹침이음 조립구조의 프레팅 피로수명 예측)

  • Kwon, Jung-Ho;Joo, Seon-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.642-652
    • /
    • 2009
  • Most of lap jointed aircraft structures encounter the fretting damages, which provoke fretting cracks prematurely and lead to significant reduction of fatigue life. In the case of ageing aircrafts especially, this fretting fatigue problem is a fatal threat for the safety and airworthiness. Recently, as the service life extension program(SLEP) of ageing aircrafts has become a hot issue, the prediction of fretting fatigue life is also indispensable. On these backgrounds, a series of experimental tests of fretting fatigue on bolted lap joint specimens, were performed. And the fretting crack initiation and propagation life of each specimen were evaluated using existing and newly proposed prediction models with the fretting parameters obtained from the FEA results for elasto-plastic contact stress analyses. The validations of prediction models were also discussed, comparing the prediction results with experimental test ones.