• Title/Summary/Keyword: 비점원오염 영향지수

Search Result 4, Processing Time 0.023 seconds

Selecting Target Sites for Non-point Source Pollution Management Using Analytic Hierarchy Process (계층분석적 의사결정기법을 이용한 비점원오염 관리지역의 선정)

  • Shin, Jung-Bum;Park, Seung-Woo;Kim, Hak-Kwan;Choi, Ra-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.976-980
    • /
    • 2007
  • 본 논문에서는 비점원오염 관리를 위한 지역선정을 위하여 계층분석적 의사결정기법에 의한 접근 방법을 제시하였다. 주어진 유역 내에서의 비점원오염의 중요기여 인자간의 관계를 반영한 것이 본 연구의 특징이다. 주요인자로는 경사도, 유달거리, 유효강우비, 불투수면적비, 토양유실량이다. 각 인자의 가중치는 계층분석적 의사결정기법(AHP)으로 구하였으며 각 인자의 가중값과 속성 값의 단순 부가가중 합으로 표현되는 비점원오염 영향지수를 정의하였다. 높은 영향지수를 가지는 지역을 비점원오염 관리지역으로 제안하였으며, 시험유역으로 발안HP#6유역을 선정하여 적용해보았다. 관리지역 결과를 비교하기 위하여 AGNPS 모의를 통한 비점원오염 부하량간의 분석을 시도하였다. 비교 및 분석을 위해 Moran's I를 이용하였으며, T-N은 $0.38{\sim}0.45$, T-P는 $0.15{\sim}0.22$의 범위를 보였다. 이는 두 접근 방법이 상이함에도 공간적으로 유사한 경향을 보인다는 것을 말한다. 본 연구에서 제시하는 방법은 비점원오염 관리지역 선정에 있어서 적용가능 함을 의미한다.

  • PDF

The Comparison of Water Quality of Daecheong-Dam basin According to the Data Sources of Land Cover Map (토지피복도 자료원에 따른 대청댐유역 수질특성 비교)

  • Lee, Geun Sang;Park, Jin Hyeog;Choi, Yun Woong
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.25-35
    • /
    • 2012
  • This study compared the influence of water quality according to the data sources of spatial information. Firstly, land cover map was constructed through image classification of Daecheong-dam basin and the accuracy of image classification from satellite image showed high as 88.76% in comparison with the large-scaled land cover map in Ministry of Environment, to calculate Event Mean Concentration (EMC) by land cover that impact on the evaluation of nonpoint source pollutant loads. Also curve number and direct runoff were calculated by spatial overlay with soil map and land cover map from image classification. And Seokcheon and Daecheong-Dam basin showed high in the analysis of curve number and direct runoff. Samgacheon-Joint and Sokcheon-Downstream basin showed high in the nonpoint source pollutant loads of BOD from direct runoff and EMC. And Samgacheon-Joint and Bonghwangcheon- Downstream basin showed high in the nonpoint source pollutant loads of TN and TP. Nonpoint source pollutant loads from image classification were compared with those by the land cover map from Ministry of Environment to present the effectivity of nonpoint source pollutant loads from satellite image. And Daecheong-Dam Upstream basin showed high as 10.64%, 11.70% and 20.00% respectively in the errors of nonpoint source pollutant loads of BOD, TN, and TP. Therefore, it is desirable that spatial information including with paddy and dry field is applied to the evaluation of nonpoint source pollutant loads in order to simulate water quality of basin effectively.

Sensitivity Analysis of Runoff-Quality Parameters in the Urban Basin (도시 배수유역의 유출-수질 특성인자의 민감도 분석)

  • Lee, Jong-Tae;Gang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.83-93
    • /
    • 1997
  • The purpose of the study is to analyze the sensitivity of the parameters that affect the runoff and water quality in the studied drainage basins. SWMM model is applied to the four drainage basins located at Namgazwa and Sanbon in Seoul and Gray Haven and Kings Creek in the USA. first of all, the optimum values of the parameters which have least simulation error to the observed data, are detected by iteration procedure. These are used as the standard values which are compared against the procedure. These are used as the standard values which are compared against the varied parameter values. In order to catch the effectiveness of the parameters to the computing result, the parameters are changed step by setp, and the results are compared to the standard results in flowerate and quality of the sewer. The study indicates that the discharge is greatly affected by the types of runoff surface, i.e., impervious area remarkably affects the peak flow and runoff volume while the surface storage affects the runoff volume at mild sloped basins. In addition, the major parameters affecting the pollution concentrations and loadings are the contaminant accumulation coefficient per unit area per time and the continuous dry weather days. Furthermore, the factors that affect the water quality during the initial rainfall period are the rainfall intensity, transport capacity coefficient and its power coefficient. Consequently, in order to simulate the runoff-water quality, it is needed to evaluate previous data in the research performed for the studied basins. To accurately estimated from the tributary areas and the rational computation methods of the pollutants calculation should be introduced.

  • PDF

Soil Contamination of Heavy Metals in National Industrial Complexes, Korea (국내 주요 국가산업단지에서 중금속에 의한 토양오염)

  • Jeong, Tae-Uk;Cho, Eun-Jeong;Jeong, Jae-Eun;Ji, Hwa-Seong;Lee, Kyeong-Sim;Yoo, Pyung-Jong;Kim, Gi-Gon;Choi, Ji-Yeon;Park, Jong-Hwan;Kim, Seong-Heon;Heo, Jong-Soo;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.69-76
    • /
    • 2015
  • BACKGROUND: Contamination of soils by heavy metals is the serious environmental problem. In particular, industrial processing is one of the main sources of heavy metal contamination. The objective of this study was to investigate the distribution characteristics of heavy metals in soils collected from industrial complex. METHODS AND RESULTS: In this study, the soil contamination and enrichment factor (EF) of heavy metals were investigated in three national industrial complexes such as Yeosu, Ulsan and Sihwa Banwal industrial complexes. The target heavy metals includes Cd, Cu, As, Hg, Pb, Cr, Zn, and Ni. The results showed that the contents of Cd, Hg, Pb, Zn and Ni in Yeosu and the contents of Cu, As and Cr in Sihwa Banwal were higher than in any other industrial complex. The results of principal component analysis(PCA) in Yeosu, Ulsan and Sihwa Banwal complex could be explained up to approximately 81.4, 69.1 and 70.9% by two factor, respectively. Enrichment factors of Cd, Pb and Zn in all the investigated industrial complexes were above 1.0 that was the value judged to be a high contamination. And EF of Cr was above 1.0 in Sihwa Banwal complex. EF of Zn in all sites was generally high from the other heavy metals. CONCLUSION: Therefore, soils maybe significantly affected by heavy metals (especially, Cd, Pb and Zn) present in the emissions from industrial complexes.