• 제목/요약/키워드: 비자성 배관

검색결과 6건 처리시간 0.019초

비자성 배관의 비접촉 굽힘 진동 측정을 위한 자기 센서의 개발 (A new magnetic sensor for the non-contact measurement of bending vibrations of non-ferromagnetic pipes)

  • 한순우;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1154-1158
    • /
    • 2006
  • This investigation suggests a new non-contact type sensor that can measure flexural vibrations of a non-ferromagnetic pipe. The sensor works on the reversed Lorentz force mechanism; however, anti-symmetric bias magnetic field suggested in this work should be applied to measure bending vibration of a non-ferromagnetic pipe. The importance of the suggested magnetic field is verified by a series of experiments. The sensor is applied to the bending vibration measurement and modal testing of an aluminum pipe and shows satisfactory working performance compared to others.

  • PDF

자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅 (Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches)

  • 박찬일;한순우;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.293-298
    • /
    • 2008
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an Inconel pipe being used in nuclear power plants.

자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅 (Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches)

  • 박찬일;한순우;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1343-1347
    • /
    • 2006
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an inconel pipe being used in nuclear power plants.

  • PDF

자기변형 트랜스듀서를 이용한 유도 비틀림파의 발생 및 배관의 이상진단 (The Generation of Torsional Waves and the Pipe Diagnosis Using Magnetostrictive Transducers)

  • 김윤영;박찬일;한순우;조승현
    • 한국소음진동공학회논문집
    • /
    • 제14권2호
    • /
    • pp.144-149
    • /
    • 2004
  • The objective of this investigation is to develop an efficient method to generate and measure torsional waves in non-ferromagnetic waveguides by using magnetostrictive transducers. In existing methods using a nickel strip that is attached circumferentially to the test specimen, large current input to the magnetostrictive transducer often generates undesired wave modes in addition to the desired torsional wave. However, we propose a new method to generate the torsional waves without being accompanied with other undesirable wane modes regardless of the input current magnitude. The specific transducer configuration is suggested and its performance is also checked through a series of experiments.

자왜 트랜스듀서를 이용한 유도 비틀림파의 발생 및 배관의 이상진단 (The generation of torsional waves and the pipe diagnosis using magnetostrictive transducers)

  • 박찬일;한순우;조승현;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.544-548
    • /
    • 2003
  • The objective of this investigation is to develop an efficient method to generate and measure torsional waves in non-ferromagnetic waveguides by using magnetostrictive transducers. In existing methods using a nickel strip that is attached circumferentially to the test specimen such as aluminum pipes, large current input to the magnetostrictive transducer often generates undesired wave modes in addition to desired torsional wave. However, we propose an improved method to generate the torsional waves without being accompanied by other undesirable wave modes regardless of the input current magnitude. The specific transducer configuration and its performance will be presented in the present investigation.

  • PDF