• 제목/요약/키워드: 비용예측모델

검색결과 560건 처리시간 0.034초

The Development of Property Prediction Model in Consideration of Biodegradable Fiber Spinning Process Data Characteristics (생분해성 섬유 방사 공정 데이터 특성을 고려한 물성 예측 모델 개발)

  • Park, SeChan;Kim, Deok Yeop;Seo, Kang Bok;Lee, Woo Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.362-365
    • /
    • 2022
  • 최근 노동 집약적인 성격의 섬유 산업에서는 AI를 통해 공정에 들어가는 시간과 비용을 줄이고 품질을 최적화 하려는 시도를 하고 있다. 그러나 섬유 방사 공정은 데이터 수집에 필요한 비용이 크고 체계적인 데이터 처리 시스템이 부족하여 축적된 데이터양이 적다. 또 방사 목적에 따라 특정 변수 위주의 조합에 대한 데이터만을 우선적으로 수집하여 데이터 불균형이 발생하며, 물성 측정환경 차이로 인해 동일 방사조건에서 수집된 샘플 간에도 오차가 존재한다. 이러한 데이터 특성들을 고려하지 않고 AI 모델에 활용할 경우 과적합과 성능 저하 등의 문제가 발생할 수 있다. 따라서 본 논문에서는 물성 단위 및 허용오차를 고려한 이상치 처리 기법과 데이터 불균형 정도 및 물성과의 상관성을 고려한 오버샘플링 기법을 물성 예측 모델에 적용한다. 두 기법들을 모델에 적용한 결과 그렇지 않은 모델에 비해 물성 예측 오차와 방사 공정 데이터에 대한 모델의 적합도가 개선됨을 보인다.

Proposal of Maintenance Scenario and Feasibility Analysis of Bridge Inspection using Bayesian Approach (베이지안 기법을 이용한 교량 점검 타당성 분석 및 유지관리 시나리오 제안)

  • Lee, Jin Hyuk;Lee, Kyung Yong;Ahn, Sang Mi;Kong, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제38권4호
    • /
    • pp.505-516
    • /
    • 2018
  • In order to establish an efficient bridge maintenance strategy, the future performance of a bridge must be estimated by considering the current performance, which allows more rational way of decision-making in the prediction model with higher accuracy. However, personnel-based existing maintenance may result in enormous maintenance costs since it is difficult for a bridge administrator to estimate the bridge performance exactly at a targeting management level, thereby disrupting a rational decision making for bridge maintenance. Therefore, in this work, we developed a representative performance prediction model for each bridge element considering uncertainty using domestic bridge inspection data, and proposed a bayesian updating method that can apply the developed model to actual maintenance bridge with higher accuracy. Also, the feasibility analysis based on calculation of maintenance cost for monitoring maintenance scenario case is performed to propose advantages of the Bayesian-updating-driven preventive maintenance in terms of the cost efficiency in contrast to the conventional periodic maintenance.

Enhanced Earned Value management Model for Estimating the Project Ending time. (프로젝트 종료시점 예측을 위한 기성고 분석 방법 보완 모델)

  • Lee, Joo-Yeon;Cho, Eun-Ae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.155-159
    • /
    • 2007
  • S/W 개발 프로젝트의 품질, 비용, 개발 기간을 잘 관리하여 프로젝트를 성공시키기 위해 PM 은 프로젝트의 종료시점과 예산의 초과를 예측할 수 있어야 한다. PMBOK 의 비용관리의 Earned Value Method 는 프로젝트의 진행에 따른 생산성의 변화와 그에 따른 비용과 일정의 증가 추정에 대한 규칙을 제시한다. 그러나 EVM 은 제조공정에서는 그 효과를 증명하였지만, S/W 프로젝트에서는 적용이 힘들어 잘 활용되고 있지 않다. 이는 사람이 주요 자원인 S/W 프로젝트에서는 Actual Cost 의 측정이 쉽지 않기 때문이다. 따라서 본 논문에서는 S/W 프로젝트 관리에서 Earned Value 의 측정이 쉽지 않아 추정되기 힘든 지연된 종료 시점에 대한 예측을 PMBOK 과 CMMI 에서 제시하는 관리 영역과의 연관성을 활용하고, EVM 을 보완하여 지연에 대한 예측모델을 만들어보고자 한다.

Decommissioning Cost Estimation of Kori Unit 1 Using a Multi-Regression Analysis Model (회귀 분석 모델을 이용한 고리 1호기 해체 비용 추정)

  • Joo, Han Young;Kim, Jae Wook;Jeong, So Yun;Moon, Joo Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제18권2_spc호
    • /
    • pp.247-260
    • /
    • 2020
  • A multi-regression model was developed to estimate the decommissioning cost for Kori unit 1 using foreign nuclear power plant (NPP) decommissioning cost data. First, the decommissioning cost data were collected for 13 boiling water reactors and 16 pressurized water reactors and converted into the values as of November 2019. Then, for the regression model, the decommissioning cost was chosen as the dependent variable, and two variables were selected as independent variables: a contamination factor that was designed to reflect the operational characteristics of the decommissioned NPP and the decommissioning period. A statistical package in the R language was used to derive the regression model. Finally, the regression model was applied to estimate the decommissioning cost for Kori unit 1. The estimated decommissioning cost for Kori unit 1 was 663.40~928.32 million US dollars (782,812~1,095,418 million Korean won).

LCCA-embedded Monte Carlo Approach for Modeling Pay Adjustment at the State DOTs (도로공사에서 생애주기비용을 사용한 지급조정모델 개발에 관한 연구)

  • Choi Jae-ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 한국건설관리학회 2002년도 학술대회지
    • /
    • pp.72-77
    • /
    • 2002
  • The development of a Pay Adjustment (PA) procedure for implementing Performance-related Specifications (PRS) is known to be a difficult task faced by most State Highway Agencies (SHAs) due to the difficulty in such areas as selecting pay factor items, modeling the relationship between stochastic variability of pay factor items and pavement performance, and determining an overall lot pay adjustment. This led to the need for an effective way of developing a scientific pay adjustment procedure by incorporating Life Cycle Cost Analysis (LCCA) embedded Monte Carlo approach. In this work, we propose a prototype system to determine a PA specifically using the data in the pavement management information systems at Wisconsin Department of Transportation (WisDOT) as an exemplary to other SHAs. It is believed that the PRS methodology demonstrated in this study can be used in real projects by incorporating the more accurate and reliable performance prediction models and LCC model.

  • PDF

A Study on Development of Median Encroachment Accident Model (중앙선침범사고 예측모델의 개발에 관한 연구)

  • 하태준;박제진
    • Journal of Korean Society of Transportation
    • /
    • 제19권5호
    • /
    • pp.109-117
    • /
    • 2001
  • The median encroachment accident model proposed in this paper is the first step to develop cost-effective criteria about installing facilities preventing traffic accidents by median encroachment. This model consists of expected annual number of median encroachment on roadway and conditional probability to collide with vehicles on opposite lane after encroachment. Expected encroachment number is related to traffic volume and quote from a study of Hutchinson & Kennedy(1966). The probability of vehicle collision is composed of assumed headway distribution of opposite directional vehicles (negative exponential distribution), driving time of encroaching vehicle and Gap & Gap acceptance model. By using expected accident number yielded from the presented model, it will be able to calculate the benefit of reduced accident and to analyze the cost of installing facilities. Therefore this will help develop cost-effective criteria of what, to install in the median.

  • PDF

Prediction model for the microstructure and properties in weld heat affected zone of low alloyed steel (저합금강의 용접 열영향부 미세조직 및 재직 예측)

  • Lee, Chang-Hee
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.1-10
    • /
    • 2010
  • 강재의 구조화에 필수적인 용접 공정 후의 저합금강 용접 열영향부 미세조직 및 재질 예측을 위해 가열 중 상변태 거동에 미치는 초기 결정립 크기의 영향, 석출물-free 오스테나이트 결정립 성장 예측 모델, 임계 석출물 크기의 영향을 고려한 용접 열영향부 석출물 조대화 예측 모델, 석출물의 Kinetics을 고려한 결정립 성장 모델, 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델, 용접 열영향부 경도 예측 모델 등에 대해 연구를 수행하였다. 이를 통해 작성된 최종 모델은 실 용접부와의 비교를 통해 신뢰성을 확인하였으며, 저합금강 용접 열영향부의 미세조직과 경도값을 잘 예측하는 것으로 판단된다. 따라서 본 연구를 통해 작성된 모델을 통하여 용접 열영향부에서의 용접부 품질을 확인하기 위한 시간적, 경제적 비용을 절감할 수 있을 것으로 기대된다.

  • PDF

The Usability Evaluation of Menu Interfaces using ACT-R : Focusing on Performance Prediction (ACT-R 모델을 이용한 메뉴 인터페이스의 사용성 평가 : 수행도 예측을 중심으로)

  • Jo, Seong-Sik;Cha, Yeon-Joo;Myung, Ro-Hae
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.1064-1068
    • /
    • 2009
  • 인지모델(Cognitive Model)에 의한 사용성 평가는 실제 실험에 의한 방법에 비해 시간, 노력, 비용을 절감할 수 있다. 여러 인지모델 중 ACT-R(Adaptive Control of Thought Rational)은 인간의 모든 인지과정을 상세하게 묘사할 수 있어 다른 모델보다 정확히 인간의 과제 수행을 정량적으로 예측할 수 있다. 그러나 ACT-R 모델을 수립하기 위해서는 인간의 지각, 주의, 기억 인출 등의 처리 과정과 행동 선택 및 수행에 필요한 과제 수행 규칙을 매우 상세하게 분석 및 기술해야 하기 때문에, GUI(Graphic User Interface) 환경에서 운용되는 메뉴 인터페이스와 같이 다양한 시각적 정보의 처리가 요구되는 과제에 대한 모델을 수립하는데는 많은 시간과 노력이 요구된다. 이에 본 연구에서는 GUI 환경에서 전문가 수준의 과제 수행을 예측할 수 있는 간략화한 ACT-R 모델 수립 방안을 제안하고, 이를 이용하여 상용 통계 분석 소프트웨어의 과제 수행도를 예측하였다. 그 결과 실제 실험을 통한 측정 결과와 간략화한 ACT-R 모델의 예측 결과가 잘 일치하였으며 본 연구에서 제시한 간략화한 ACTR 모델이 메뉴 인터페이스의 사용성 평가에 효율적으로 적용될 수 있음을 확인하였다.

  • PDF

The Life Expectancy Making Model for Construction Equipment (건설장비 수명결정 모델)

  • Lee, Yongsu;Kim, Cheol Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제32권5D호
    • /
    • pp.453-461
    • /
    • 2012
  • Life analysis is conducted for economic analysis of equipment or facilities. The purpose of life analysis is to predict future indicators for scrapping construction equipment, and establish and utilize a wide variety of business strategies according to data predictions. First, this study shows the methods to figure out average life, life expectancy and life prediction of construction equipment and the analysis of life making methods, using survival curves. Second, the study proposes and examines the life expectancy making model depending on revenues and expenses. The result of the study reveals that the economic life of the same equipment varies with expenses, revenues and the initial cost. The life expectancy making model for construction equipment reflects respective management status for equipment and will help efficient management for companies.

Predicting the Fetotoxicity of Drugs Using Machine Learning (기계학습 기반 약물의 태아 독성 예측 연구)

  • Myeonghyeon Jeong;Sunyong Yoo
    • Journal of Life Science
    • /
    • 제33권6호
    • /
    • pp.490-497
    • /
    • 2023
  • Pregnant women may need to take medications to treat preexisting diseases or diseases that develop during pregnancy. However, some drugs may be fetotoxic and lead to, for example, teratogenicity and growth retardation. Predicting the fetotoxicity of drugs is thus important for the health of the mother and fetus. The fetotoxicity of many drugs has not been established because various challenges hinder the ability of researchers to determine their fetotoxicity. The need exists for in silico-based fetotoxicity assessment models, as they can modernize the testing paradigm, improve predictability, and reduce the use of animals and the costs of fetotoxicity testing. In this study, we collected data on the fetotoxicity of drugs and constructed fetotoxicity prediction models based on various machine learning algorithms. We optimized the models for more precise predictions by tuning the hyperparameters. We then performed quantitative performance evaluations. The results indicated that the constructed machine learning-based models had high performance (AUROC >0.85, AUPR >0.9) in fetotoxicity prediction. We also analyzed the feature importance of our model's predictions, which could be leveraged to identify the specific features of drugs that are strongly associated with fetotoxicity. The proposed model can be used to prescreen drugs and drug candidates at a lower cost and in less time. It provides a predictive score for fetotoxicity risk, which may be beneficial in the design of studies on fetotoxicity in human pregnancy.