• Title/Summary/Keyword: 비에너지 밀도

Search Result 513, Processing Time 0.02 seconds

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF

Foods Use of the Red-Tongued Viper Snake (Gloydius ussuriensis) (쇠살모사 Red-tongued viper snake (Gloydius ussuriensis)의 먹이 이용)

  • Kim, Byoung-Soo;Oh, Hong-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.6
    • /
    • pp.657-663
    • /
    • 2014
  • This study was conducted to investigate the difference in feeding habits of Red-Tongued Viper Snakes, according to available foods sources and areas. The effects of differences in food sources were found on Red-Tongued Viper Snake inhabited in the Jeju Island and its islet Gapado, from May 2006 to Nov. 2010. The food sources for the Red-Tongued viper snake population in the Jeju Island were found to be as follows: Chinese red-headed centipedes (Scolopendra subspinipes mutilans), Jeju Salamanders (Hynobius quelpaertensis), Japanese tree Frogs (Hyla japonica), Narrow-mouthed Toad (Kaloula borealis), Dybowski's Brown Frogs (Rana dybowskii), Black-spotted Pond Frogs (Rana nigromaculata), Smooth Skinks (Scincella vandenburghi), Asian Keelback Snakes (Amphiesma vibakari), Lesser White-toothed Shrews (Crosidura shantungensis), Hallasan Shrews (Sorex caecutiens hallamontanus), and Jeju Striped Field Mice (Apodemus chejuensis). This implies that Red-Tongued Viper Snakes mainly feed on amphibians, reptiles, and small mammals. Among these, amphibians occupied the highest portion at 55.2% followed by mammals at 20.7%, centipedes at 13.8%, and reptiles at 10.3%. On the contrary, Red-tongued viper snake population in Gapado only feed on Chinese red-headed centipedes and Smooth Skinks (S. vandenburghi). Since only a small amount of nutrient can be obtained from Chinese red-headed centipeds or Smooth Skinks, this feeding habit for Red-tongued viper snake would adversely effect on the growth or regeneration. The reason why Red-Tongued viper snake population in the Gapado mainly feed on Lizard and Centipedes in spite of relatively various available food sources, might be due to the low density of other food sources in the Gapado. Red-Tongued viper snake could be feeding on foods that are low in quality but are easily accessible, to minimize energy consumption on searching for other more nutritious foods. A snake tends to select the size of its food depending on the size of its own head. The positive correlation was found between the size of the heads of Red-Tongued viper snakes from the Jeju island and the diameter of their foods. The head size was larger in the males than females in viper snake population from the Jeju Island, which might effect on their selection of foods. However, no significant difference was found between the sizes of the head and the food in the Red-Tongued viper snake population from the Gapado. The findings of this study would provide meaningful data, which directly shows that even within the same viper species they choose different available food sources according to their inhabitance. This leads to their growth and adaptation to their environment which is beneficial for sustaining of its population.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.