• Title/Summary/Keyword: 비숙련자

Search Result 162, Processing Time 0.02 seconds

The Analysis of Radiation Exposure of Hospital Radiation Workers (병원 방사선 작업 종사자의 방사선 피폭 분석 현황)

  • Jeong Tae Sik;Shin Byung Chul;Moon Chang Woo;Cho Yeong Duk;Lee Yong Hwan;Yum Ha Yong
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.157-166
    • /
    • 2000
  • Purpose : This investigation was peformed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. Methods and Materials : The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyzed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. Results : The average of yearly radiation exposure of 347 persons was 1.52$\pm$1.35 mSv. Though it was less than 50mSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87$\pm$1.01 mSv/year, mean 1.22$\pm$0.69 mSv between 31 and 40 year old and mean 0.97$\pm$0.43 mSv/year over 41year old (p<0.001). Men received mean 1.67$\pm$1.54 mSv/year were higher than women who received mean 1.13$\pm$0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear modicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.59$\pm$1.81 msv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (p<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74$\pm$1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17$\pm$0.35 mSv/year and upper gastrointestinal room of mean 1.74$\pm$1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75$\pm$1.17 mSv/year and mean 1.50$\pm$1.39 mSv/year than other people who work in radiation area in hospital (p<0.05). Especially young doctors and technologists have the high opportunity to receive higher radiation exposure. Conclusions : The training and education of radiation workers for radiation exposure risks are important and it is necessary to rotate worker in short period in high risk area. The hospital management has to concern health of radiation workers more and to put an effort to reduce radiation exposure as low as possible in radiation areas in hospital.

  • PDF

The Consideration of the Region of Interest on $^{99m}Tc$-DMSA Renal Scan in Pediatric Hydronephrosis Patients (수신증을 진단 받은 소아 환자의 DMSA 신장 검사에서 정확한 관심영역 설정에 대한 고찰)

  • NamKoong, Hyuk;Lee, Dong-Hyuk;Oh, Shin-Hyun;Cho, Seok-Won;Park, Hoon-Hee;Kim, Jung-Yul;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Purpose: Most of diagnosis in the pediatric hydronephrosis patients have been performed $^{99m}Tc$-DMSA renal scan. Then the region of interest (ROI) is set for comparative analysis of uptake ratio in left-right kidney after acquiring the image. But if the equipment set an automatic ROI, the ROI could include expanded renal pelvis due to hydronephrosis and the uptake ratio of left-right kidney will be incorrect result. Therefore this study compared both ROIs including expanded renal pelvis and excluding renal pelvis through experiment using normal kidney phantom and expanded renal pelvis phantom and suggested setting method of improved ROI. In addition, this study have been helped by readout doctor for investigate distinction radiopharmaceutical uptake between renal cortex and remained urine by expanded renal pelvis. Materials and Methods: The both of renal phantoms were filled with water and shacked with $^{99m}TcO_4$ 111 MBq. In order to describe the expanded renal pelvis, the five latex balloon were all filled with 10 mL water and each of balloon was mixed with $^{99m}TcO_4$ 18.5, 37, 55.5, 74, 92.5 MBq. And we made phantom with fixed $^{99m}TcO_4$activity of 37 MBq and mixed water 5, 10, 15, 20, 25 mL in each balloon. The left kidney was fixed its shape and the right kidney was modified like as hydronephrosis kidney by attached the latex balloons. And the acquiring counts were 2 million. After acquisition, we compared the image of ROI with Expanded renal pelvis and the image of ROI without renal pelvis for analyzing difference in the uptake ratio of left-right kidney and for reproducibility, set the ROI 5 times in the same images. Patients were injected $^{99m}Tc$-DMSA 1.5~1.9 MBq/kg and scanned 3 to 4 hours after injection. The each of 3 skillful radio technologists performed the comparing estimation by setting ROI. To determine statistical significance between two data, SPSS (ver. 17) Wilcoxon Signed Ranks Test was used. Results: As a result of renal phantom's experiment, we compared with average of counts Background (BKG) ratios in the setting of ROI including expanded renal pelvis and setting of excluding expanded renal pelvis. Therefore, they can obtain changed counts and changed ratios. Patient also can obtain same results. In addition, the radiopharmaceutical uptake in expanded renal pelvis was come out the remained urine that couldn't descend to ureter by the help of readout doctor. Conclusion: As above results, the case of setting ROI including expanded renal pelvis was more abnormally increasing uptake ratio than the case of setting ROI excluding expanded renal pelvis in analysis the uptake ratio in left-right kidney of hydronephrosis. Because of the work convenience and prompted analysis, the automatic ROI is generally used. But in case of the hydronephrosis study, we should set the manual ROI without expanded renal pelvis for an accurate observation of the uptake ratio of left-right kidney since the radiopharmaceutical uptake in expanded renal pelvis is the remained urine.

  • PDF