• Title/Summary/Keyword: 비소화학종

Search Result 24, Processing Time 0.029 seconds

Arsenic Speciation and Risk Assessment of Miscellaneous Cereals by HPLC-ICP-MS (HPLC-ICP-MS를 활용한 잡곡의 비소 화학종 및 위해 분석)

  • An, Jae-Min;Hong, Kyong-Suk;Kim, Sung-Youn;Kim, Dae-Jung;Lee, Ho-Jin;Shin, Hee-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.119-128
    • /
    • 2017
  • BACKGROUND: Miscellaneous cereal have been largely consumed in Korea as due to their physiological functions beneficial to human health. The cereals are currently a social concern because they have been found to contain heavy metals. Thus, monitoring heavy metals in the cereals is an important requirement for food safety analysis. In this study, we determined arsenic concentration in the cereals randomly harvested from different markets. METHODS AND RESULTS: Inorganic arsenic was determined by ICP-MS coupled with HPLC system. The HPLC-ICP-MS analysis was optimized based on the limit of detection and recover test to reach $0.13-1.24{\mu}g/kg$ and 94.3-102.1%, respectively. The concentrations of inorganic arsenic equivalent to daily exposure were levels of $19.91{\mu}g/day$ in mixed grain, $1.07{\mu}g/day$ in glutinous rice, $0.77{\mu}g/day$ in black brown rice, $0.13{\mu}g/day$ in barley and $0.11{\mu}g/day$ in soybeans. CONCLUSION: The levels of arsenic in miscellaneous cereals were found lower than the recommended The Joint FAO/WHO Expert Committee on Food Additives (JECFA) levels, suggesting that the cereals marketed in Korea are not potential concern in risk assessment.

Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism (비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작)

  • Ko, Il-Won;Kim, Ju-Yong;Kim, Gyeong-Ung;An, Ju-Seong;Davis, A. P.
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • This study was performed to investigate the effect of humic acid on the adsorption of arsenic onto hematite and its binding mechanism through the chemical speciation modeling in the binary system and the adsorption modeling in the ternary system. The complexation modeling of arsenic and humic acid was suitable for the binding model with the basis of the electrostatic repulsion and the effect of bridging metal. In comparison with the experimental adsorption data in the ternary system, the competitive adsorption model from the binary intrinsic equilibrium constants was consistent with the amount of arsenic adsorption. However, the additive rule showed the deviation of model in the opposite way of cationic heavy metals, because the reduced organic complexation of arsenic and the enhanced oxyanionic competition diminished the adsorption of arsenic. In terms of the reaction mechanism, the organic complex of arsenic, neutral As(III) and oxyanionic As(V) species were transported and adsorbed competitively to the hematite surface forming the inner-sphere complex in the presence of humic acid.

Adsorption of Arsenic onto Two-Line Ferrihydrite (비소의 Two-Line Ferrihydrite에 대한 흡착반응)

  • Jung, Young-Il;Lee, Woo-Chun;Cho, Hyen-Goo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • Arsenic has recently become of the most serious environmental concerns, and the worldwide regulation of arsenic fur drinking water has been reinforced. Arsenic contaminated groundwater and soil have been frequently revealed as well, and arsenic contamination and its treatment and measures have been domestically raised as one of the most important environmental issues. Arsenic behavior in geo-environment is principally affected by oxides and clay minerals, and particularly iron (oxy)hydroxides have been well known to be most effective in controlling arsenic. Among a number of iron (oxy)hydroxides, for this reason, 2-line ferrihydrite was selected in this study to investigate its effect on arsenic behavior. Adsorption of 2-line ferrihydrite was characterized and compared between As(III) and As(V) which are known to be the most ubiquitous species among arsenic forms in natural environment. Two-line ferrihydrite synthesized in the lab as the adsorbent of arsenic had $10\sim200$ nm for diameter, $247m^{2}/g$ for specific surface area, and 8.2 for pH of zero charge, and those representative properties of 2-line ferrihydrite appeared to be greatly suitable to be used as adsorbent of arsenic. The experimental results on equilibrium adsorption indicate that As(III) showed much stronger adsorption affinity onto 2-line ferrihydrite than As(V). In addition, the maximum adsorptions of As(III) and As(V) were observed at pH 7.0 and 2.0, respectively. In particular, the adsorption of As(III) did not show any difference between pH conditions, except for pH 12.2. On the contrary, the As(V) adsorption was remarkably decreased with increase in pH. The results obtained from the detailed experiments investigating pH effect on arsenic adsorption show that As(III) adsorption increased up to pH 8.0 and dramatically decreased above pH 9.2. In case of As(V), its adsorption steadily decreased with increase in pH. The reason the adsorption characteristics became totally different depending on arsenic species is attributed to the fact that chemical speciation of arsenic and surface charge of 2-line ferrihydrite are significantly affected by pH, and it is speculated that those composite phenomena cause the difference in adsorption between As(III) and As(V). From the view point of adsorption kinetics, adsorption of arsenic species onto 2-line ferrihydrite was investigated to be mostly completed within the duration of 2 hours. Among the kinetic models proposed so for, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto 2-line ferrihydrite.

Risk Analysis of Inorganic Arsenic in Foods (식품 중 무기비소의 위해 분석)

  • Yang, Seung-Hyun;Park, Ji-Su;Cho, Min-Ja;Choi, Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.227-249
    • /
    • 2016
  • Arsenic and its compounds vary in their toxicity according to the chemical forms. Inorganic arsenic is more toxic and known as carcinogen. The provisional tolerable weekly intake (PTWI) of $15{\mu}g/kg$ b.w./week established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) has been withdrawn, while the EFSA panel suggested $BMDL_{0.1}$ $0.3{\sim}8{\mu}g/kg\;b.w./day$ for cancers of the lung, skin and bladder, as well as skin lesions. Rice, seaweed and beverages are known as food being rich in inorganic arsenic. As(III) is the major form of inorganic arsenic in rice and anaerobic paddy soils, while most of inorganic arsenic in seaweed is present as As(V). The inorganic arsenic in food was extracted with solvent such as distilled water, methanol, nitric acid and so on in heat-assisted condition or at room temperature. Arsenic speciation analysis was based on ion-exchange chromatography and high-performance liquid chromatography equipped with atomic absorption spectrometry and inductively coupled plasma mass spectrometry. However, there has been no harmonized and standardized method for inorganic arsenic analysis internationally. The inorganic arsenic exposure from food has been estimated to range of $0.13{\sim}0.7{\mu}g/kg$ bw/day for European, American and Australian, and $0.22{\sim}5{\mu}g/kg$ bw/day for Asian. The maximum level (ML) for inorganic arsenic in food has established by EU, China, Australia and New Zealand, but are under review in Korea. Until now, several studies have conducted for reduction of inorganic arsenic in food. Inorganic arsenic levels in rice and seaweed were reduced by more polishing and washing, boiling and washing, respectively. Further research for international harmonization of analytical method, monitoring and risk assessment will be needed to strengthen safety management of inorganic arsenic of foods in Korea.

Monitoring of arsenic and arsenic species in fish collagen in Korea (국내 유통 어류 콜라겐의 총비소 및 비소화학종 함량 모니터링)

  • Yeo-Jae Shin;Mi-Ra Jang;Eun-Hee Kim;Yun-Hee Kim;Min-Jung Kim;Min-Jung Kim;Jae-Hoon Cha;Mi-Hyun Choi;Seok-Ju Cho;In-Sook Hwang;Yong-Seung Shin
    • Analytical Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.135-142
    • /
    • 2023
  • The total arsenic and 6 arsenic species were investigated in 56 fish collagen products using ICP-MS (Inductively coupled plasma-mass spectrometer) and HPLC-ICP-MS(High performance liquid chromatography-Inductively coupled plasma-mass spectrometer). The mean concentrations of total arsenic and arsenic species were 40.103±81.133 ㎍/kg (N.D.~586.686) and 30.070±50.378 ㎍/kg (N.D.~313.871), respectively. The mean concentration of inorganic arsenic was 24.610±32.706 ㎍/kg (N.D.~129.331), and the As(V) (Arsenate) was the most dominant. The standards and specifications of arsenic have not been established for fish collagen products. Our study presents that arsenic levels are relatively safe compared with not only previous studies but also domestic and international standards. However, in one sample, the total arsenic concentration was 586.686 ㎍/kg, showing the inorganic was 8.119 ㎍/kg, and the DMA was 305.752 ㎍/kg, which was high than the Canadian standard for organic arsenic. In conclusion, it is necessary to monitor arsenic levels consistently and establish standards and specifications of arsenic in fish collagen products to assure consumer safety.

Microbial Effects on Geochemical Behavior of Arsenic under Aresnic under Aerobic Condition and Their Applicability to Environmental Remediation (호기성환경에서 비소의 지구화학적 거동에 미치는 미생물의 영향 및 오염 복구에의 적용 가능성)

  • Lee, Sang-U;Kim, Gyeong-Ung;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2001
  • The effects on arsenic geochemistry of indigenous microorganisms isolated from an area contaminated with high concentration of arsenic were investigated. Arsenite exerted higher inhibitory effects on the microbes' growth than arsenate. During incubation of the microbes in an arsenate-spiked medium over 24 hours, decrease in microbial growth was observed as arsenate content increased. Arsenate of 150 mM or over apparently inhibited cell growth. However, further incubation for up to 4 days in the high arsenate concentration medium resulted in cell growth, implying that the microorganisms adjusted their biochemical functions to detoxify arsenic and maintain growth. Two types of microbes were observed during 20 hours to reduce arsenate to arsenite in solution through a detoxification mechanism. As well, decrease in the total arsenic content occurred over a 4-day incubation with the same microbes in an arsenate-spiked medium. Therefore it is suggested that microorganisms can influence arsenic speciation in natural settings and this may be applied to efficient bioremediation of arsenic-contaminated sites.

  • PDF

Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes (유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구)

  • 이상훈;천찬란;심지애
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.349-356
    • /
    • 2003
  • As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

Arsenic species in husked and polished rice grains grown at the non-contaminated paddy soils in Korea (국내 비오염 논토양에서 재배한 현미와 백미 중 비소화학종 함량)

  • Kim, Da-Young;Kim, Ji-Young;Kim, Kye-Hoon;Kim, Kwon-Rae;Kim, Hyuck-Soo;Kim, Jeong-Gyu;Kim, Won-Il
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.391-395
    • /
    • 2018
  • There is an increasing concern over arsenic (As) contamination of paddy soil and rice with regard to food safety. This study was conducted to investigate total and inorganic As concentration in one hundred husked and polished rice samples collected at the non-contaminated paddy soil in Korea. Arsenic species in rice samples were extracted using 1% nitric acid ($HNO_3$) with a microwave oven and were measured using high performance liquid chromatography coupled with inductively coupled plasma-mass spectrometry. Mean concentrations of total As in husked rice and polished rice were 0.18 and $0.11mg\;kg^{-1}$, respectively. Also, average inorganic As concentrations in husked rice and polished rice were 0.11 and $0.07mg\;kg^{-1}$, respectively. These levels are lower than the standard guideline value 0.35 and $0.2mg\;kg^{-1}$ for inorganic As in husked and polished rice recommended by Codex Committee on Contaminants in Foods and Ministry of Food and Drug Safety, respectively. The mean of the inorganic As ratio for the total amount of As was 0.65 and 0.67 for husked rice and polished rice, respectively, and the range was from 0.08 to 1.0. For health risk assessment, the average value of cancer risk probability was $9.24{\times}10^{-5}$ and ranged from $2.30{\times}10^{-5}$ to $1.90{\times}10^{-5}$. Therefore, human exposure to As through dietary intake of surveyed rice samples might considered to be a low health risk.

Arsenic Speciation and Risk Assesment of Hijiki (Hizikia fusiforme) by HPLC-ICP-MS (HPLC-ICP-MS를 이용한 톳의 비소 화학종 분석 및 위해성 평가)

  • Ryu, Keun-Young;Shim, Sung-Lye;Hwang, In-Min;Jung, Min-Seok;Jun, Sam-Nyeo;Seo, Hye-Young;Park, Jong-Seok;Kim, Hee-Yeon;Om, Ae-Sun;Park, Kyung-Su;Kim, Kyong-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • This study investigated arsenic speciation and risk assesment in 30 samples of hijiki purchased from local market in 10 Korean cities. The mean arsenic concentration of the hijiki samples was 45.65 mg/kg (dryness; moisture content of 91.1${\pm}$1.6%), and the major arsenic compound was arsenate [As(V)]. The concentrations of As(V) and As(III), as inorganic arsenic compounds, were detected to be 40.36 mg/kg and 0.37 mg/kg, respectively, and made up 88.6% (40.46 mg/kg) of the arsenic in the hijiki. Among the samples, the highest inorganic arsenic concentration was identified at 9.19 mg/kg (wet), and for an adult with a body weight of 60 kg was within an acceptable level as 0.7% (6.43 mg/60 kg/week) when compared with the provisional tolerable weekly intake (PTWI) (900 mg/60 kg/week), and would be considered safe with respect to health-hazardous effects.

Characterization of Arsenic Sorption on Manganese Slag (망간슬래그의 비소에 대한 수착특성 연구)

  • Seol, Jeong Woo;Kim, Seong Hee;Lee, Woo Chun;Cho, Hyeon Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.229-244
    • /
    • 2013
  • Arsenic contamination may be brought about by a variety of natural and anthropogenic causes. Among diverse naturally-occurring chemical speciations of arsenic, trivalent (As(III), arsenite) and pentavalent (As(V), arsenate) forms have been reported to be the most predominant ones. It has been well known that the behavior of arsenic is chiefly affected by aluminum, iron, and manganese oxides. For this reason, this study was initiated to evaluate the applicability of manganese slag (Mn-slag) containing high level of Mn, Si, and Ca as an efficient sorbent of arsenic. The main properties of Mn-slag as a sorbent were investigated and the sorption of each arsenic species onto Mn-slag was characterized from the aspects of equilibrium as well as kinetics. The specific surface area and point of zero salt effect (PZSE) of Mn-slag were measured to be $4.04m^2/g$ and 7.73, respectively. The results of equilibrium experiments conducted at pH 4, 7 and 10 suggest that the sorbed amount of As(V) was relatively higher than that of As(III), indicating the higher affinity of As(V) onto Mn-slag. As a result of combined effect of pH-dependent chemical speciations of arsenic as well as charge characteristics of Mn-slag surface, the sorption maxima were observed at pH 4 for As(V) and pH 7 for As(III). The sorption of both arsenic species reached equilibrium within 3 h and fitting of the experimental results to various kinetic models shows that the pseudo-second-order and parabolic models are most appropriate to simulate the system of this study.