• Title/Summary/Keyword: 비선회 유동

Search Result 62, Processing Time 0.025 seconds

Interaction Effects of Turbulent Flow and Chemical Reaction in a Swirl Combustor (스월연소기의 난류와 화학반응 간섭효과)

  • Sung, Hong-Gye;Kim, Jong-Chan;Yang, Vigor;Cha, Bong-Jun;Ahn, I-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.71-74
    • /
    • 2007
  • Large Eddy Simulation(LES) has been conducted to insight interaction effects of turbulent flow and chemical reaction of a lean-Premixed swirl combustor. The unsteady turbulent flame is carefully simulated so that the motion of flow and flame can be characterized in detail. Fuel lumps escaping from the primary combustion zone move downstream and consequently produce local hot spots conveying large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by the spatial and temporal Rayleigh parameter.

  • PDF

Geochemistry and Mineral Paragenesis of Bentonite from the Tertiary Formation in Yangnam Area (양남 지역 제 3 기층에 부존하는 벤토나이트의 지구 화학 및 광물 생성 단계)

  • 노진환;오성진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.111-127
    • /
    • 1994
  • 양남 지역의 제 3 기층인 하서리 응회암층의 중.상부에 부존되는 벤토나이트들은 원암의 암상과 화학조성에 의존되는 광호 양상과 광물상을 나타낸다. 벤톤나이트들은 대부분 안산암질 원암의 기원을 시사하는 희유 및 희토류 원소들의 함유 양상을 보이고, 현무암질 원암의 벤토나이트는 최상부의 일부 층준에만 그 산출이 국한된다. 이 지역의 벤토나이트는 주로 유리질 내지 라필리 응회암이 속성 변질된 것으로 이 과정에서 SiO2와 알칼리 (Na, K) 성분들이 고갈되는 화학 성분상의 유동 양상이 인지된다. 벤토나이트는 주된 광물 성분인 스멕타이트 이외에 흔히 단백석 및 석영같은 규산 광물과 휼란다이트, 모데나이트 및 클리높틸로라이트간은 불석광물들을 수반한다. 스멕타이트는 대부분 몰노릴로나이트 유형이지만 최상부 층준의 현무암질원 벤토나이트와 비교하여 논트로나이트의 광물 화학, X-선회절 양상, 층간 화학 및 염화학적 특성 등이 논의되었다. 이 지역 벤토나이트의 형성과정은 (1) 화산쇄설물의 급속한 퇴적, (2) 비이상적으로 높은 매몰 온도(<8$0^{\circ}C$) 조건, (3) 규산 광물의침전에 의한 공극수 내외 H4SiO4의 제거, (4) 원암의 낮은 Si/al 함유비와 높은 Fe 함유도 등에 의해서 조장된 것으로 해석된다.

  • PDF

A Study on Numerical Calculations of Multi-stage Dedust System coupled with the Collection Principle of Cyclone, Inertial Impaction and Bag filter (I) : Optimized Design of Dedust inlet (사이클론과 관성충돌 및 백필터의 제진원리를 일체화한 멀티 제진시스템의 수치 해석적 연구 (I) : 집진기 입구 최적화 설계)

  • Jung, Yu-Jin;Jeong, Moon-Heon;Park, Ki-Woo;Hong, Sung-Gil;Lim, Ki-Hyuk;Suh, Hye-Min;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.367-370
    • /
    • 2012
  • 본 연구는 하나의 장치 내에서 "싸이클론-관성충돌-여과포 집진"이라는 다단 제진 단계가 동시에 이루어져 입경 분포별로 순차적인 제진이 가능한 멀티 집진기의 처리가스 제어 효율을 극대화시킬 수 있는 기류 흐름을 얻기 위한 최적화 설계 조건을 검토하는 것이다. 우선 1단계 제진 과정인 원심력을 이용하여 조대입자의 유선 이탈을 촉진시킬 수 있는 사이클론 유동을 최적화시키기 위한 집진기 입구 형상 설계 검토를 위해 수치 해석적 연구를 수행하였다. 그 결과, 멀티집진기 입구 형상을 일반적인 설계 방식인 접선 유입식으로만 설계한 것에 비해 선회류를 한번 더 가속화시킬 수 있는 가이드 베인을 추가로 설계한 경우 선회류의 pitch가 짧고 강하게 형성되어 사이클론부에서 조대입자의 유선 이탈을 촉진시키는데 매우 효과적인 것으로 예측되었다. 단, 사이클론부 하단 벤츄리 형상으로 인해 약 4~5 m/s의 강한 하향 흐름이 호퍼 하단까지 형성되고 있어 탈리 분진의 재비산 문제가 발생할 가능성이 크므로 벤츄리 형상 설치 유무에 대한 영향도 추가적으로 연구가 필요할 것으로 판단된다.

  • PDF

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

Analysis of an internal flow with multi-perforated tube geometry in an integrated Urea-SCR muffler (다공튜브 형상변화에 따른 촉매 삽입형 Urea-SCR 머플러 내부유동 해석)

  • Moon, Namsoo;Lee, Sangkyoo;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.500-509
    • /
    • 2013
  • This study reports a numerical analysis of the internal flow characteristics of the integrated urea-SCR muffler system with the various geometries of the multi-perforated tube which is set up between the muffler inlet and in front of SCR catalysts. The multi-perforated tube is generally used to disperse uniformly the urea-water solution spray and to make better use of the SCR catalyst, resulting in the increased $NO_x$ reduction and decreased ammonia slip. The effects of the multi-perforated tube orifice area ratios on the velocity distributions in front of the SCR catalyst, which is ultimately quantified as the uniformity index, were investigated for the optimal muffler system design. The steady flow model was applied by using a general-purpose commercial software package. The air at the room temperature was used as a working fluid, instead of the exhaust gas and urea-water solution spray mixture. From the analysis results, it was clarified that the multi-perforated tube geometry sensitively affected to the formation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst.

A Study on Cyclone Combustion System for Efficient Thermal Oxidation of VOC (휘발성 유기물질의 효율적 열산화를 위한 사이클론 연소시스템 연구)

  • 현주수;이시훈;임영준;민병무
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.112-117
    • /
    • 2004
  • Volatile organic compounds (VOCs) are low calorific value gases (LCVG) emitted from chemical processes such as painting booth, dye works and drying processes etc. Characteristics of VOCs are low calorific values less than 150kcal/㎥, high activation energy for ignition and low energy output. These characteristics usually make combustion unstable and its treatment processes needs high-energy consumption. The cyclone combustion system is suitable for LCVG burning because it can recirculate energy through a high swirling flow to supply the activation energy for ignition, increases energy density In make a combustion temperature higher than usual swirl combustor and also increases mixing intensity. This research was conducted to develop optimized cyclone combustion system for thermal oxidation of VOCs. This research was executed to establish the effect of swirl number with respect to the combustion temperature and composition of exhausted gas in the specific combustor design.

LES Studies on Flow Structure and Flame Characteristic with Equivalence Ratios in a Swirling Premixed Combustor (선회 예혼합연소기에서 당량비 변화에 따른 유동구조 및 화염특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Kim, Se-Won;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2006
  • The impacts of equivalence ratio on flow structure and flame dynamic in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

Effects of Parameters of Combustion and Fuel Injection System on Performance and Exhaust Emissions in a Diesel Engine (연소계 및 연료분사계의 구성인자가 디젤엔진의 성능 및 배기 배출물에 미치는 영향)

  • Lee, Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • This study investigates a heavy duty diesel engine with swept vol. 12.6L, 4cycle-OHC type to verify the effects of the performance and exhaust gas emission according to the variable specifications of both swirl ratio and flow coefficient in inlet port, combustion bowl and fuel injection system. To meet the high BMEP and stringent exhaust emission standard, a turbocharger with wastegate and an intercooler were installed in the engine. Helical port, major design parameters for combustion chamber and electronic fuel injection pump with 1,000bar were reviewed and applied. Confirmation tests were also performed to meet the target value, $NO_x$ 5.0g/kWh and PM 0.1g/kWh of Euro3 exhaust emission legislation. The results of this study show that not only is it effective to use a relatively bigger bowl size for controlling rapid burning condition due to the decreased in-bowl swirl, but also to use a concave cam with double injection rates to decrease $NO_x$.

A Numerical Calculation for the Optimum Operation of Cyclone-based Combustion System (선회류 방식 연소시스템의 최적 조업을 위한 수치해석)

  • Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Kim, Ji-Won;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1005-1012
    • /
    • 2011
  • This research carried out a 3-dimensional simulation using computerized fluid dynamics (CFD) for the flow characteristics, temperature distribution, velocity distribution and residence time, etc. in a reactor in order to derive the optimal combustion conditions of an innovative combustion system. The area-weighted average temperature of the outlet of a furnace during combustion at a condition of fuel input rate 1.5 ton/hr, residence time 1.25 sec and air/fuel ratio 2.1 was $1,077^{\circ}C$, which is a suitable temperature for energy recovery and treatment of air pollutants. Exhaust gas is discharged through a duct at a 40~50 m/s maximum speed along strong vortexes at the center of a combustion chamber, so strong turbulence is created at the center of a combustion chamber to enhance the combustion speed and combustion efficiency. In this system, the optimum operation conditions to prevent incomplete combustion and suppress the formation of thermal NOx were air/fuel ratio 1.9~2.1 and fuel input rate 1.25~1.5 ton/hr.

PARAMETRIC NUMERICAL STUDY OF THE REACTING FLOW FIELD OF A COAL SLURRY ENTRAINED GASIFIER (분류층 석탄 가스화기 반응 유동장 변수 전산해석 연구)

  • Song, W.Y.;Kim, H.S.;Shin, M.S.;Jang, D.S.;Lee, Jae-Goo
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.44-51
    • /
    • 2014
  • Considering the importance of the detailed resolution of the reacting flow field inside a gasifier, the objective of this study lies on to investigate the effect of important variables to influence on the reacting flow and thereby to clarify the physical feature occurring inside the gasifier using a comprehensive gasifier computer program. Thus, in this study the gasification process of a 1.0 ton/day gasifier are numerically modeled using the Fluent code. And parametric investigation has been made in terms of swirl intensity and aspect ratio of the gasifier. Doing this, special attention is given on the detailed change of the reacting flow field inside a gasifier especially with the change of this kind of design and operation parameters. Based on this study, a number of useful conclusions can be drawn in the view of flow pattern inside gasifier together with the consequence of the gasification process caused by the change of the flow pattern. Especially, swirl effect gives rise to a feature of a central delayed recirculation zone, which is different from the typical strong central recirculation appeared near the inlet nozzle. The delayed feature of central recirculation appearance could be explained by the increased axial momentum due to the substantial amount of the presence of the coal slurry occupying over the entire gasifier in gasification process. Further, the changes of flow pattern are explained in detail with the gasifier aspect ratio. In general, the results obtained are physically acceptable in parametric study.