• Title/Summary/Keyword: 비선형 회귀

Search Result 778, Processing Time 0.026 seconds

M-quantile kernel regression for small area estimation (소지역 추정을 위한 M-분위수 커널회귀)

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.749-756
    • /
    • 2012
  • An approach widely used for small area estimation is based on linear mixed models. However, when the functional form of the relationship between the response and the input variables is not linear, it may lead to biased estimators of the small area parameters. In this paper we propose M-quantile kernel regression for small area mean estimation allowing nonlinearities in the relationship between the response and the input variables. Numerical studies are presented that show the sample properties of the proposed estimation method.

A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis (다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구)

  • Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, the development of a weight estimation model of electronic scale with nonlinear characteristics is presented using polynomial regression analysis. The output voltage of the load cell was measured directly using the reference mass. And a polynomial regression model was obtained using the matrix and curve fitting function of MS Office Excel. The weight was measured in 100g units using a load cell electronic scale measuring up to 5kg and the polynomial regression model was obtained. The error was calculated for simple($1^{st}$), $2^{nd}$ and $3^{rd}$ order polynomial regression. To analyze the suitability of the regression function for each model, the coefficient of determination was presented to indicate the correlation between the estimated mass and the measured data. Using the third order polynomial model proposed here, a very accurate model was obtained with a standard deviation of 10g and the determinant coefficient of 1.0. Based on the theory of multi regression model presented here, it can be used in various statistical researches such as weather forecast, new drug development and economic indicators analysis using logistic regression analysis, which has been widely used in artificial intelligence fields.

Fast Detection of Abnormal Data in IIoT with Segmented Linear Regression (분할 선형 회귀 분선을 통한 IIoT의 빠른 비정상 데이터 탐지)

  • Lee, Tae-Ho;Kim, Min-Woo;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.101-102
    • /
    • 2019
  • 산업용 IoT (IIoT)는 최근들어 제조 시스템의 중요한 구성 요소로 간주된다. IIoT를 통해 시설에서 감지된 데이터를 수집하여 작동 조건을 적절하게 분석하고 처리한다. 여기서 비정상적인 데이터는 전체 시스템의 안전성 및 생산성을 위해 신속하게 탐지되어야한다. 기존 임계 값 기반 방법은 임계 값 미만의 유휴 오류 또는 비정상적인 동작을 감지 할 수 없으므로 IIoT에 적합하지 않다. 본 논문에서는 예측 구간과 우선 순위기반 스케줄링을 이용한 분할 선형 회귀 분석을 기반으로 비정상적인 데이터를 검출하는 새로운 방법을 제안한다. 시뮬레이션 결과 제안한 기법은 비정상적인 데이터 검출 속도에서 임계치, 일반 선형 회귀 또는 FCFS 정책을 사용하는 기존의 기법보다 우수함을 알 수 있었다.

  • PDF

Nonlinear Autoregressive Modeling of Southern Oscillation Index (비선형 자기회귀모형을 이용한 남방진동지수 시계열 분석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.997-1012
    • /
    • 2006
  • We have presented a nonparametric stochastic approach for the SOI(Southern Oscillation Index) series that used nonlinear methodology called Nonlinear AutoRegressive(NAR) based on conditional kernel density function and CAFPE(Corrected Asymptotic Final Prediction Error) lag selection. The fitted linear AR model represents heteroscedasticity, and besides, a BDS(Brock - Dechert - Sheinkman) statistics is rejected. Hence, we applied NAR model to the SOI series. We can identify the lags 1, 2 and 4 are appropriate one, and estimated conditional mean function. There is no autocorrelation of residuals in the Portmanteau Test. However, the null hypothesis of normality and no heteroscedasticity is rejected in the Jarque-Bera Test and ARCH-LM Test, respectively. Moreover, the lag selection for conditional standard deviation function with CAFPE provides lags 3, 8 and 9. As the results of conditional standard deviation analysis, all I.I.D assumptions of the residuals are accepted. Particularly, the BDS statistics is accepted at the 95% and 99% significance level. Finally, we split the SOI set into a sample for estimating themodel and a sample for out-of-sample prediction, that is, we conduct the one-step ahead forecasts for the last 97 values (15%). The NAR model shows a MSEP of 0.5464 that is 7% lower than those of the linear model. Hence, the relevance of the NAR model may be proved in these results, and the nonparametric NAR model is encouraging rather than a linear one to reflect the nonlinearity of SOI series.

Fuzzy Nonlinear Regression Model (퍼지비선형회귀모형)

  • Hwang, Seung-Gook;Park, Young-Man;Seo, Yoo-Jin;Park, Kwang-Pak
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.99-105
    • /
    • 1998
  • This paper is to propose the fuzzy regression model using genetic algorithm which is fuzzy nonlinear regression model. Genetic algorithm is used to classify the input data for better fuzzy regression analysis. From this partition. each data can be have the grade of membership function which is belonged to a divided data group. The data group, from optimal partition of the region of each variable, have different fuzzy parameters of fuzzy linear regression model one another. We compound the fuzzy output of each data group so as to obtain the final fuzzy number for a data. We show the efficiency of this method by means of demonstration of a case study.

  • PDF

Prediction for Nonlinear Time Series Data using Neural Network (신경망을 이용한 비선형 시계열 자료의 예측)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.357-362
    • /
    • 2012
  • We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.

National Nonstationary Frequence Analysis Using for Gumbel Distribution (Gumbel 분포를 이용한 전국의 비정상성 빈도 해석)

  • Kim, Gwang-Seob;Lee, Gi-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.379-379
    • /
    • 2011
  • 본 연구는 우리나라 전국 기상관측소 중 1973년부터 2009년까지의 시 강수자료가 구축되어 있는 기상관측소 55개 지점에 대하여 비정상성 빈도해석을 수행하였다. 각 지점에 대하여 지속시간 1시간, 24시간에 대한 연 최대 강수량 자료를 구축하여 초기 20년을 기준으로 1년씩 추가한 연 최대 강수량 누적 자료를 생성하고, 생성된 기간별 자료의 평균, 위치매개변수, 축척매개변수를 산정하였으며, 위치매개변수와 축척매개변수는 확률가중모멘트법을 사용하여 산정하였다. 산정된 연 최대 평균 누적 강수량과 연도와의 선형 회귀식을 산정하여 목표연도별(2040, 2070, 2100년) 평균 강수량을 산정하였고, 위치매개변수와 축척매개변수도 평균 누적 강수량과의 선형 회귀식을 산정함으로써, 목표연도에 해당하는 각 매개변수를 산정하였다. 또한 산정된 목표연도별 평균 강수량, 위치매개변수와 축척매개변수를 이용해 확률강수량을 산정하였다. 비정상성 빈도해석을 수행하여 산정된 55개 지점에 대한 목표연도별 확률강수량을 Inverse Distance Weighted(IDW) 보간법을 사용하여 전국의 확률강수량을 공간적으로 표현하였다. 전국단위의 비정상성 빈도해석을 실시한 결과, 전체적으로 각 목표연도별 확률강수량이 증가하는 것으로 나타났으나, 일부 감소하는 지역도 나타났다. 경기도와 강원도 등 중부지역에서 확률강수량의 증가가 큰 것으로 나타났으며, 특히 강원도(강릉, 인재 등) 지역에서 확률강수량의 증가폭이 가장 크게 나타났다. 또한 남해지역에서는 대부분 확률강수량이 감소하는 것으로 나타났고, 그중에서 전라남도 남해안 부근(장흥 등)에 확률강수량의 감소가 가장 크게 나타났으며, 경북지역과 전북지역 부근에서는 증가 또는 감소의 차이가 미비하게 나타났다. 하지만 목표연도 2070년과 2100년에 대하여 산정된 확률강수량으로부터 선형 회귀식을 통해 목표연도별 평균 강수량, 위치매개변수, 축척매개변수를 추정하여 확률강수량을 산정하는 것에 한계가 있음을 보여주었다.

  • PDF

Generalized Maximum Entropy Estimator for the Linear Regression Model with a Spatial Autoregressive Disturbance (오차항이 SAR(1)을 따르는 공간선형회귀모형에서 일반화 최대엔트로피 추정량에 관한 연구)

  • Cheon, Soo-Young;Lim, Seong-Seop
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.265-275
    • /
    • 2009
  • This paper considers a linear regression model with a spatial autoregressive disturbance with ill-posed data and proposes the generalized maximum entropy(GME) estimator of regression coefficients. The performance of this estimator is investigated via Monte Carlo experiments. The results show that the GME estimator provides efficient and robust estimate for the unknown parameter.

Hybrid Learning Algorithm for Improving Performance of Regression Support Vector Machine (회귀용 Support Vector Machine의 성능개선을 위한 조합형 학습알고리즘)

  • Jo, Yong-Hyeon;Park, Chang-Hwan;Park, Yong-Su
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.477-484
    • /
    • 2001
  • This paper proposes a hybrid learning algorithm combined momentum and kernel-adatron for improving the performance of regression support vector machine. The momentum is utilized for high-speed convergence by restraining the oscillation in the process of converging to the optimal solution, and the kernel-adatron algorithm is also utilized for the capability by working in nonlinear feature spaces and the simple implementation. The proposed algorithm has been applied to the 1-dimension and 2-dimension nonlinear function regression problems. The simulation results show that the proposed algorithm has better the learning speed and performance of the regression, in comparison with those quadratic programming and kernel-adatron algorithm.

  • PDF

A study on change-points in simple linear regression (단순선형회귀에서의 변화점에 대한 연구)

  • 정광모;한미혜
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.1
    • /
    • pp.29-39
    • /
    • 1992
  • A testing and estimation procedure is considered for changes at unknown time point in simple linear regression model. A test statistic of quadratic form is suggested. We also discuss the asymptotic distribution and its level control. The proposed method is compared with the likelihood ratio test through a example.

  • PDF