• Title/Summary/Keyword: 비선형 현상

Search Result 1,022, Processing Time 0.023 seconds

Verification of Radiation Therapy Planning Dose Based on Electron Density Correction of CT Number: XiO Experiments (컴퓨터영상의 전자밀도보정에 근거한 치료선량확인: XiO 실험)

  • Choi Tae-Jin;Kim Jin-Hee;Kim Ok-Bae
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • This study peformed to confirm the corrected dose In different electron density materials using the superposition/FFT convolution method in radiotherapy Planning system. The experiments of the $K_2HPO_4$ diluted solution for bone substitute, Cork for lung and n-Glucose for soft tissue are very close to effective atomic number of tissue materials. The image data acquisited from the 110 KVp and 130 KVp CT scanner (Siemes, Singo emotions). The electron density was derived from the CT number (H) and adapted to planning system (Xio, CMS) for heterogeneity correction. The heterogeneity tissue phantom used for measurement dose comparison to that of delivered computer planning system. In the results, this investigations showed the CT number is highly affected in photoelectric effect in high Z materials. The electron density in a given energy spectrum showed the relation of first order as a function of H in soft tissue and bone materials, respectively. In our experiments, the ratio of electron density as a function of H was obtained the 0.001026H+1.00 in soft tissue and 0.000304H+1.07 for bone at 130 KVp spectrum and showed 0.000274H+1.10 for bone tissue in low 110 KVp. This experiments of electron density calibrations from CT number used to decide depth and length of photon transportation. The Computed superposition and FFT convolution dose showed very close to measurements within 1.0% discrepancy in homogeneous phantom for 6 and 15 MV X rays, but it showed -5.0% large discrepancy in FFT convolution for bone tissue correction of 6 MV X rays. In this experiments, the evaluated doses showed acceptable discrepancy within -1.2% of average for lung and -2.9% for bone equivalent materials with superposition method in 6 MV X rays. However the FFT convolution method showed more a large discrepancy than superposition in the low electron density medium in 6 and 15 MV X rays. As the CT number depends on energy spectrum of X rays, it should be confirm gradient of function of CT number-electron density regularly.

  • PDF

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet (강섬유 및 FRP Sheet로 보강한 2방향 RC 슬래브의 고속 충격저항성능에 대한 해석적 평가)

  • Lee, Jin Young;Shin, Hyen Oh;Min, Kyeng Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.1-9
    • /
    • 2013
  • This paper presents high-velocity impact analysis of two-way RC slabs, including steel fibers and strengthening with fiber reinforced polymer (FRP) sheets for evaluating impact resistance. The analysis uses the LS-DYNA program, which is advanced in impact analysis. The present analysis was performed similarly to the high-velocity impact tests conducted by VTT, the technical research center of Finland, to verify the analysis results. High-velocity impact loads were applied to $2100{\times}2100{\times}250$ mm size two-way RC slab specimens, using a non-deformable steel projectile of 47.5kg mass and 134.9m/s velocity. In this research, extra impact analysis of material specimens was carried out to verify the material models used to the analysis. The elastic-plastic hydrodynamic model, concrete damage model and orthotropic elastic model were used to simulate the non-linear softening behavior of steel fiber reinforced concrete (SFRC), and material properties of normal concrete and FRP sheets, respectively. It is concluded that the suggested analysis technique has good reliability, and can be effectively applied in evaluating the effectiveness of reinforcing/retrofitting materials and techniques. Also, the Steel fiber and FRP sheet strengthening systems provided outstanding performance under high-velocity impact loads.

Preparation and Luminescence Optimization of CeO2:Er/Yb Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 CeO2:Er/Yb 형광체 제조 및 발광특성 최적화)

  • Jung, Kyeong Youl;Park, Jea Hoon;Song, Shin Ae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.319-325
    • /
    • 2015
  • Submicron-sized $CeO_2:Er^{3+}/Yb^{3+}$ upconversion phosphor particles were synthesized by spray pyrolysis, and their luminescent properties were characterized by changing the concentration of $Er^{3+}$ and $Yb^{3+}$. $CeO_2:Er^{3+}/Yb^{3+}$ showed an intense green and red emission due to the $^4S_{3/2}$ or $^2H_{11/2}{\rightarrow}^4I_{15/2}$ and $^4F_{9/2}{\rightarrow}^4I_{15/2}$ transition of $Er^{3+}$ ions, respectively. In terms of the emission intensity, the optimal concentrations of Er and Yb were 1.0 % and 2.0%, respectively, and the concentration quenching was found to occur via the dipole-dipole interaction. Upconversion mechanism was discussed by using the dependency of emission intensities on pumping powers and considering the dominant depletion processes of intermediate energy levels for the red and green emission with changing the $Er^{3+}$ concentration. An energy transfer from $Yb^{3+}$ to $Er^{3+}$ in $CeO_2$ host was mainly involved in ground-state absorption (GSA), and non-radiative relaxation from $^4I_{11/2}$ to $^4I_{13/2}$ of $Er^{3+}$ was accelerated by the $Yb^{3+}$ co-doping. As a result, the $Yb^{3+}$ co-doping led to greatly enhance the upconversion intensity with increasing ratios of the red to green emission. Finally, it is revealed that the upconversion emission is achieved by two photon processes in which the linear decay dominates the depletion of intermediate energy levels for green and red emissions for $CeO_2:Er^{3+}/Yb^{3+}$ phosphor.

The Evaluation for Pullout Performance of Steel Strip Reinforcements with Deformed-Bars as Transverse Members (지지부재로 이형철근을 설치하는 띠형 강보강재의 인발성능 평가)

  • Jung, Sung-Gyu;Kim, Juhyong;Cho, Samdeok;Lee, Kwangwu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.77-86
    • /
    • 2013
  • Laboratory pullout tests were conducted to evaluate pullout performance of steel strip reinforcements with deformed steel bars as transverse members. The steel strip reinforcement has an installation hole to assemble a deformed steel bar. Jumunjin standard sand is used to form a relative density of ground model to 80%. Frictional resistance of steel strip reinforcement without transverse member increases sharply at the initial displacement and quickly decreases with displacement. Maximum frictional resistance increases linearly as normal pressure increasing, and soil-reinforcement interaction friction angle(${\rho}_{peak}$) of a steel strip reinforcement is estimated to $14.64^{\circ}$. Passive resistance increases with displacement and converge into maximum passive resistance in most cases. Maximum passive resistance increases linearly as normal pressure increasing irrespective of shape of the steel reinforcement. Pullout force of steel strip reinforcements with installation holes or transverse members largely increases about 4 to 7 times compared to frictional resistance force of steel strip reinforcements when embedment length($L_e$) of steel strip reinforcements is 500 mm. In the case of using 2 transverse members, interference effect is observed due to the spacing of 2 transverse members and location of assembly holes and transverse members.

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network (산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.256-264
    • /
    • 2020
  • Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.

Color Correction Method for High Dynamic Range Image Using Dynamic Cone Response Function (동적 원추 세포 응답을 이용한 높은 동적 폭을 갖는 영상 색상 보정 방법)

  • Choi, Ho-Hyoung;Yun, Byoung-Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.104-112
    • /
    • 2012
  • Recently, the HDR imaging technique that mimics human eye is incorporated with LCD/LED display devices to deal with mismatch between the real world scene and the displayed image. However, HDR image has a veiling glare limit as well as a scale of the local contrast problem. In order to overcome these problems, several color correction methods, CSR(center/surround Retinex), MSR (Multi-Scale Retinex), tone-mapping method, iCAM06 and so on, are proposed. However, these methods have a dominated color throughout the entire resulting image after performing color correction. Accordingly, this paper presents a new color correction method using dynamic cone response function. The proposed color correction method consists of tone-mapping and dynamic cone response. The tone-mapping is obtained by using a linear interpolation between chromatic and achromatic. Thereafter, the resulting image is processed through the dynamic cone response function, which estimates the dynamic responses of human visual system as well as deals with mismatch between the real scene image and the rendered image. The experiment results show that the proposed method yields better performance of color correction over the conventional methods.

Role of Crystallographic Tilt Angle of GaAs Substrate Surface on Elastic Characteristics and Crystal Quality of InGaP Epilayers (GaAs 기판표면의 Tilt각도가 InGaP 에피막의 탄성특성 및 결정질에 미치는 영향)

  • 이종원;이철로;김창수;오명석;임성욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • InGaP epilayers were grown on the flat, $2^{\circ}$off, $6^{\circ}$ off, and $10^{\circ}$off GaAs substrates by organo-metallic vapor phase epitaxy, and influences of crystallographic misorientation of the substrate on the structural and optical properties such as lattice mismatch, elastic strain, lattice curvature, misfit stress, and PL intensity /line-width were investigated in this study. Material characterizations were carried out by TXRD( tripple-axis x-ray diffractometer) and low temperature (11K) PL (photoluminescence). With increase of the substrate misorientation angle (S.M.A.), the relative incorporation of Ga atoms on the substrate surface was found to be enhanced. Also, with increase of the S. M. A., the x-ray line-width of the InGaP epilayer was reduced, indicating that the crystal quality of the epilayer could be improved tilth a misoriented substrate. It was also found that the elastic accommodation of the strain-free lattice misfit was more remarkable in a misoriented sample. PL intensity increased, and PL line-width and emission wavelength decreased with the increase of S. M. A. The results conclude that the elastic characteristics and the crystal quality of the InGaP epilayer could be remarkably enhanced when the misoriented substrates were employed.

  • PDF

Effects of Sleep on Balance Control and Reaction Time to Visual Stimuli (수면이 균형조절과 시각적 자극 반응시간에 미치는 영향)

  • Park, Sookyoung;Park, Jung-A;Park, Kanghui;Kim, Joo-Heon;Hong, Yonggeun
    • Sleep Medicine and Psychophysiology
    • /
    • v.23 no.2
    • /
    • pp.68-76
    • /
    • 2016
  • Objectives: To find evidence that sleep is necessary for normal brain function, thus indicating that declines in both sleep quality and quantity are related to worse performance of many daily tasks and deteriorated physical functions. The present study investigates the relationships of balance control and reaction time with sleep quality. Methods: 58 healthy (male 20, female 38) volunteers with informed consent participated in this study. The Self-reported Pittsburgh Sleep Quality Index (PSQI) was used to evaluate sleep quality and relevant factors, and the subjects were divided into groups A (PSQI < 5) and B ($PSQI{\geq}5$) based on this index. Static balance control and reaction time to visual stimuli were conducted to assess their relationship with sleep quality. Results: Group B exhibited excessive daytime sleepiness significantly more often compared to group A. Static balance control did not markedly change relative to sleep quality, but reaction time and error to visual stimuli were significantly increased in group B compared to group A. Conclusion: These findings indicate that a decline in sleep quality can result in delayed reactions, as well as decreased accuracy of these reactions. They also suggest that low sleep quality may be associated with changes in physical functions, including balance control through reduced selective attention.