• Title/Summary/Keyword: 비선형 피드백 선형화

Search Result 22, Processing Time 0.014 seconds

Disturbance Observer based Feedback Linearization Control for Electro-Hydraulic Servo Systems (전기 유압 서보 시스템의 비선형 외란 관측기 기반피드백 선형화 제어)

  • Won, Daehee;Kim, Wonhee;Chung, Chung Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.297-303
    • /
    • 2015
  • We propose a disturbance observer(DOB) based feedback linearization control to improve position tracking performance in the presence of disturbance. The proposed method consists of a disturbance observer and a feedback linearization controller. The disturbance observer is designed to estimate the load force disturbance in electro-hydraulic systems. An auxiliary state variable is proposed in order to avoid amplification of the measurement noises in the disturbance observer. Using the estimated disturbance enables the Electro-hydraulic servo systems(EHS) dynamics to be changed into feedback linearization from. In order to compensate for the disturbance and to track the desired position, the feedback linearization based controller is proposed. The proposed method has a simple structure which can easily be implemented in practice. As a result, the proposed method improves the position tracking performance in the presence of disturbance. Its performance is validated via simulations.

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.