• 제목/요약/키워드: 비선형 특징 추출

검색결과 122건 처리시간 0.024초

SpPCA와 MLP에 기반을 둔 응합법칙에 의한 MRS 패턴분류 (MRS Pattern Classification Using Fusion Method based on SpPCA and MLP)

  • 송창규;이대종;전병석;유정웅
    • 한국통신학회논문지
    • /
    • 제30권9C호
    • /
    • pp.922-929
    • /
    • 2005
  • 본 논문에서는 SpPCA와 MLP에 기반을 둔 융합법칙에 의한 MRS 패턴분류기법을 제안한다. 차원축소를 위해 사용되는 기존의 PCA 기법은 입력데이터가 비선형 특성을 갖는 경우 최적의 변환행렬을 구할 수 없다는 문제점을 가지고 있다. 따라서, 본 논문에서는 구간별로 입력데이터를 분할한 후 PCA에 의해 특징을 추출하는 SpPCA 기법을 이용하여 입력패턴의 차원을 축소한다. 다음 단계인 분류단계에서는 MLP 비선형분류기를 이용하여 구간마다 추출된 특징벡터를 이용하여 기준패턴과의 유사도를 산출한다. 최종 분류단계에서는 MLP에 의해서 산출된 유사도에 기반을 둔 융합법칙에 의하여 MRS 패턴을 분류한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해서 향상된 인식결과를 보임을 확인하였다.

짧은 음성을 대상으로 하는 화자 확인을 위한 심층 신경망 (Deep neural networks for speaker verification with short speech utterances)

  • 양일호;허희수;윤성현;유하진
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.501-509
    • /
    • 2016
  • 본 논문에서는 짧은 테스트 발성에 대한 화자 확인 성능을 개선하는 방법을 제안한다. 테스트 발성의 길이가 짧을 경우 i-벡터/확률적 선형판별분석 기반 화자 확인 시스템의 성능이 하락한다. 제안한 방법은 짧은 발성으로부터 추출한 특징 벡터를 심층 신경망으로 변환하여 발성 길이에 따른 변이를 보상한다. 이 때, 학습시의 출력 레이블에 따라 세 종류의 심층 신경망 이용 방법을 제안한다. 각 신경망은 입력 받은 짧은 발성 특징에 대한 출력 결과와 원래의 긴 발성으로부터 추출한 특징과의 차이를 줄이도록 학습한다. NIST (National Institute of Standards Technology, 미국) 2008 SRE(Speaker Recognition Evaluation) 코퍼스의 short 2-10 s 조건 하에서 제안한 방법의 성능을 평가한다. 실험 결과 부류 내 분산 정규화 및 선형 판별 분석을 이용하는 기존 방법에 비해 최소 검출 비용이 감소하는 것을 확인하였다. 또한 짧은 발성 분산 정규화 기반 방법과도 성능을 비교하였다.

피싱 웹사이트 URL의 수준별 특징 모델링을 위한 컨볼루션 신경망과 게이트 순환신경망의 퓨전 신경망

  • 부석준;김혜정
    • 정보보호학회지
    • /
    • 제29권3호
    • /
    • pp.29-36
    • /
    • 2019
  • 폭발적으로 성장하는 소셜 미디어 서비스로 인해 개인간의 연결이 강화된 환경에서는 URL로써 전파되는 피싱 공격의 위험성이 크게 강조된다. 최근 텍스트 분류 및 모델링 분야에서 그 성능을 입증받은 딥러닝 알고리즘은 피싱 URL의 구문적, 의미적 특징을 각각 모델링하기에 적절하지만, 기존에 사용하는 규칙 기반 앙상블 방법으로는 문자와 단어로부터 추출되는 특징간의 비선형적인 관계를 효과적으로 융합하는데 한계가 있다. 본 논문에서는 피싱 URL의 구문적, 의미적 특징을 체계적으로 융합하기 위한 컨볼루션 신경망 기반의 퓨전 신경망을 제안하고 기계학습 방법 중 최고의 분류정확도 (0.9804)를 달성하였다. 학습 및 테스트 데이터셋으로 45,000건의 정상 URL과 15,000건의 피싱 URL을 수집하였고, 정량적 검증으로 10겹 교차검증과 ROC커브, 정성적 검증으로 오분류 케이스와 딥러닝 내부 파라미터를 시각화하여 분석하였다.

특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적 (Moving object segmentation and tracking using feature based motion flow)

  • 이규원;김학수;전준근;박규태
    • 한국통신학회논문지
    • /
    • 제23권8호
    • /
    • pp.1998-2009
    • /
    • 1998
  • 본 논문에서는 배경의 움직임이 유발되는 능동 CCD 카메라를 통하여 실시간으로 포착되는 영상 데이터를 대상으로 카메라의 사전 설치 정보나 좌표 보정(calibration) 없이 강체(rigid body) 혹은 비 강체(non-rigid body)의 움직이는 물체를 추출하고 이의 이동 방향을 판단하여, 추적하는 효율적인 알고리즘을 제안한다. 이동 물체의 영역분할을 위하여 동체의 형태를 규정하는 특징 점을 추출하고, 시간에 따른 특징 점의 이동 벡터로 구성된 특정 플로우 필드(feature flow field)를 구한 후 이들을 다차원 특정 공간상에서 군집화(clustering)함으로써 동체를 추출한다. 제안하는 IRMAS(lncremenatal Rotational Minimum Angle Search)에 의하여 군집화된 특정점들의 볼록 다각형(convex hull)올 구함으로써 이동 물체의 개괄적인 외곽 형태를 재 구성한다. 또한, 이동 궤적의 갑작스러운 변화를 가져올 수 있는 동작 특성을 가지는 이동 물체의 효과적인 추적을 목적으로 개선된 선형 예측기를 사용하였다. 이동 궤적 예측기는 기존의 선형 예측기의 차수를 이동의 변화도에 따라 적응적으로 조정함으로써 예측 오차를 감소시켜, 빠른 속도로 이동 궤적에 수렴한다.

  • PDF

LS-SVM을 이용한 TFT-LCD 패널 내의 결함 검사 방법 (A Defect Inspection Method in TFT-LCD Panel Using LS-SVM)

  • 최호형;이건희;김자근;주영복;최병재;박길흠;윤병주
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.852-859
    • /
    • 2009
  • TFT-LCD 자동 검사 시스템에서 결함 검출을 위한 영상은 라인 스캔 카메라(line scan camera)나 에어리어 스캔 카메라 (area scan camera)에 의해서 획득하게 된다. 그러나 임펄스 잡음과 가우시안 잡음, CCD 혹은 CMOS 센서의 한계, 조명등의 영향으로 열화된 영상이 획득되며, 한도성 결함 영역을 인간의 육안으로 구분하기 어렵게 된다. 본 논문에서는 효율적인 결함 검출을 위해 특징 추출 방법과 결함 검출 방법을 제안한다. 특징 벡터로 웨버의 법칙을 이용한 결함 영역과 주변 배경 영역의 평균 밝기 차와 주변 배경 영역의 밝기 변화를 이용한 표준편차를 이용하며, 결함 영역 검출를 위해 추출된 특징 벡터를 이용하여 비선형 SVM을 적용한다. 실험 결과는 제안한 방법이 다른 방법들 보다 성능이 우수함을 보여준다.

선형특징을 사용한 불변 영상정합 기법 (Invariant Image Matching using Linear Features)

  • 박세제;박영태
    • 전자공학회논문지S
    • /
    • 제35S권12호
    • /
    • pp.55-62
    • /
    • 1998
  • 두개의 영상을 정합 하는 것은 많은 컴퓨터 시각장치의 응용과정 중 기본적인 과정이다. 본 논문에서는 선형특징을 사용한 정합기법으로서 회전각도와 크기비율에 불변한 영상정합 기법을 제안한다. 영상은 edge 검출, 세선화, 선형화 과정에 의해 선형 세그먼트의 집합으로 묘사된다. 세그먼트 사이의 각도차이와 새로운 거리척도에 의한 크기비율을 사용해 Hough 공간에서 최대로 일치하는 변환 파라메터를 추정한다. 추정된 파라메터는 1단계 relaxation과 Hough 기법으로 이루어진 고속 선형특징 정합과정에 의해 검증된다. 제안한 기법은 변환 파라메터에 대한 사전정보를 필요로 하지 않으며 추출된 선형 세그먼트 크기의 변화에 민감하지 않은 특성과 기존의 relaxation 기법에 비해 빠른 처리속도를 가진다.

  • PDF

증강현실을 위한 매트릭 복원 (Metric Reconstruction for Augmented Reality)

  • 유정재;김혜미;박창준;김홍석;이인호
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.649-652
    • /
    • 2007
  • 이 논문에서는 영화, CF 같은 영상물 제작 시 CG/실사 합성을 위해 배경기하정보를 추출하는 알고리즘을 제안한다. Metric Reconstruction 은 카메라 자동 보정을 통해 이루어지며 이는 오랫동안 연구되어 온 분야이다. 접근방법은 영상의 특징점 추적 정보와 카메라 내부변수 가정으로부터 유도되는 자기 보정 방식과 공간상에서 미리 기하 정보를 알고 있는 보정틀을 사용하는 방식으로 크게 분류될 수 있다. CG/실사 합성의 작업 효율성을 위해서는 배경 영상에 보정틀이 보이지 않는 것이 좋은데 자연 특징점(Natural Feature)에만 의존하는 자기 보정 방식의 경우 2K 급 영상에서 CG 객체를 합성했을 때 떨림이 느껴지지 않을 만큼 정확한 결과를 얻기 힘들다. 이 논문에서는 Polleyfeys[2]가 제안하였던 영상 시퀀스를 입력으로 하는 자기 보정 시스템을 바탕으로 마야 작업 환경에서의 핀홀 카메라 모델에 맞도록 카메라 내부변수의 비선형 최적화를 수행하는 방법과 사용자 개입을 통한 카메라 변수 정확도 향상방법을 제안한다.

  • PDF

강화학습을 사용한 실시간 이동 물체 추적에 관한 연구 (A Study of Real Time Object Tracking using Reinforcement Learning)

  • 김상헌;이동명;정재영;운학수;박민욱;김관형
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.87-90
    • /
    • 2003
  • 과거의 이동로봇 시스템은 완전한 자율주행이 주된 목표였으며 그때의 영상정보는 단지 모니터링을 하는 보조적인 수단으로 사용되었다. 그러나 지금은 이동 물체의 추적, 대상 물체의 인식과 판별, 특징 추출과 같은 다양한 응용분야에서 영상정보를 이용하는 연구가 활발히 진행되고 있다 또한 제어 측면에서는 전통적인 제어기법으로는 해결하기 힘들었던 여러 가지 비선형적인 제어를 지능제어 방법을 통하여 많이 해결하곤 하였다. 그러한 지능제어에서 신경망을 많이 사용하기도 한다. 최근에는 신경망의 학습에 많이 사용하는 방법 중 강화학습이 많이 사용되고 있다. 강화학습이란 동적인 제어평면에서 시행착오를 통해, 목적을 이루기 위해 각 상황에서 행동을 학습하는 방법이다. 그러므로 이러한 강화학습은 수많은 시행착오를 거쳐 그 대응 관계를 학습하게 된다. 제어에 사용되는 제어 파라메타는 어떠한 상태에 처할 수 있는 상태와 행동들, 그리고 상태의 변화, 또한 최적의 해를 구할 수 있는 포상알고리즘에 대해 다양하게 연구되고 있다. 본 논문에서 연구한 시스템은 비젼시스템과 Strong Arm 보드를 이용하여 대상물체의 색상과 형태를 파악한 후 실시간으로 물체를 추적할 수 있게 구성하였으며, 또한 물체 이동의 비선형적인 경향성을 강화학습을 통하여 물체이동의 비선형성을 보다 유연하게 대처하여 보다 안정하고 빠르며 정확하게 물체를 추적하는 방법을 실험을 통하여 제안하였다.

  • PDF

DTW와 PCA에 기반한 효과적인 필적 검증 (Effective Handwriting Verification through DTW and PCA)

  • 장석우;허문행;김계영
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권7호
    • /
    • pp.25-32
    • /
    • 2009
  • 논문에서는 오프라인 환경에서 패턴분석을 적용하여 두필적의 유사성을 자동으로 분석하여 필적을 검증하는 방법을 제안한다. 제안된 방법에서는 먼저 필적 문서에서 문자 영역만을 분할하고, 분할된 문자 영역에 대한 특징을 추출한다. 그리고 비선형적인 형태로 추출되는 특징으로부터 동적 타임 워핑(DTW)과 다변량 통계 분석법(PCA) 알고리즘을 이용하여 기준이 되는 특징과의 유사성을 구한다. 본 논문에서 제안된 필적 검증 방법은 효과적인 특징 추출 방법 및 기존의 짧은 패턴에서 효과적으로 수행하던 방법들을 다양한 길이를 가진 특징에 대해서도 효과적으로 필적 검증이 가능하도록 하였다. 본 논문은 실험 결과는 제안된 방법인 기존의 방법보다 우수함을 다양한 실험을 통해서 보여준다. 제안된 필적 검증 방법은 기존에 감정 전문가에 의해 수동적으로 수행되던 필적 검증 작업을 자동화하고, 기존 필적 검증 작업의 객관성을 배가할 수 있을 것으로 기대된다.

패턴 인식문제를 위한 유전자 알고리즘 기반 특징 선택 방법 개발 (Genetic Algorithm Based Feature Selection Method Development for Pattern Recognition)

  • 박창현;김호덕;양현창;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.466-471
    • /
    • 2006
  • 패턴 인식 문제에서 중요한 전처리 과정 중 하나는 특정을 선택하거나 추출하는 부분이다. 특정을 추출하는 방법으로는 PCA가 보통 사용되고 특정을 선택하는 방법으로는 SFS 나 SBS 등의 방법들이 자주 사용되고 있다. 본 논문은 진화 연산 방법으로써 비선형 최적화 문제에서 유용하게 사용되어 지고 있는 유전자 알고리즘을 특정 선택에 적용하는 유전자 알고리즘 특정 선택 (Genetic Algorithm Feature Selection: GAFS)방법을 개발하여 다른 특징 선택 알고리즘과의 비교를 통해 본 알고리즘의 성능을 관찰한다.