• Title/Summary/Keyword: 비선형 특징 추출

Search Result 122, Processing Time 0.024 seconds

Fuzzy Threshold Inference of a Nonlinear Filter for Color Sketch Feature Extraction (컬러 스케치특징 추출을 위한 비선형 필터의 퍼지임계치 추론)

  • Cho Sung-Mok;Cho Ok-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.398-403
    • /
    • 2006
  • In this paper, we describe a fuzzy threshold selection technique for feature extraction in digital color images. this is achieved by the formulation a fuzzy inference system that evaluates threshold for feature configurations. The system uses two fuzzy measures. They capture desirable characteristics of features such as dependency of local intensity and continuity in an image. We give a graphical description of a nonlinear sketch feature extraction filter and design the fuzzy inference system in terms of the characteristics of the feature. Through the design, we provide selection method on the choice of a threshold to achieve certain characteristics of the extracted features. Experimental results show the usefulness of our fuzzy threshold inference approach which is able to extract features without human intervention.

  • PDF

Feature Extraction and Classification of High Dimensional Biomedical Spectral Data (고차원을 갖는 생체 스펙트럼 데이터의 특징추출 및 분류기법)

  • Cho, Jae-Hoon;Park, Jin-Il;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.297-303
    • /
    • 2009
  • In this paper, we propose the biomedical spectral pattern classification techniques by the fusion scheme based on the SpPCA and MLP in extended feature space. A conventional PCA technique for the dimension reduction has the problem that it can't find an optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback, we extract features by the SpPCA technique in extended space which use the local patterns rather than whole patterns. In the classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, biomedical spectral patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.

Extraction of Ganglion from Ultrasonic Images Using Nonlinear Fuzzy Stretching and Fuzzy Clustering Method (비선형 퍼지 스트레칭 기법과 퍼지 클러스터링 기법을 이용한 초음파 영상에서의 결절종 추출)

  • Cho, Jae-Hun;Lee, Jae-Min;Kim, Kwang Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.68-70
    • /
    • 2017
  • 본 논문에서는 결절종을 추출하는 과정에서 비선형 퍼지 스트레칭 기법과 FCM 기반 양자화 기법을 적용하여 결절종을 추출하는 방법을 제안한다. 제안된 결절종 추출 방법은 비선형 형태의 퍼지 스트레칭 기법을 적용하여 명암 대비를 강조한 ROI 영역에 Monotone Cubic Spline기법과 FCM 기반 양자화 기법을 적용하여 Monotone Cubic Spline기법이 적용된 상단 부분을 분리한다. 분리된 상단 영역들에서 결절종이 명암도가 낮고 타원 형태를 가진다는 형태학적 특징을 이용하기 위해서 침식 기법을 적용하여 결절종의 후보 영역을 추출하고 8 방향 윤곽선 추적 알고리즘을 적용하여 잡음 영역을 제거한다. 잡음이 제거된 결절종 후보 영역에서 최종 결절종 영역을 추출하기 위해 라벨링 기법을 적용한다. 제안된 결절종 추출 방법의 성능을 분석하기 위해서 필립스 초음파 장비를 이용하여 20명 환자에서 획득한 20장의 영상을 대상으로 실험한 결과 기존의 방법보다 TPR(Ture Positive Rate)이 높게 나타나는 것을 확인하였다.

  • PDF

A Efficient Learning Algorithm of Neutral Networks for Nonlinear PCA (비선형 주요성분 분석을 위한 신경망의 효율적인 학습알고리즘)

  • 조용현;윤중환;박창환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.353-356
    • /
    • 2000
  • 본 논문에서는 데이터 내의 비선형 속성을 보다 빠르고 정확하게 추출하기 위한 수정된 학습알고리즘의 비선형 주요 성분분석 신경망을 제안한다. 제안된 학습알고리즘은 신경망의 학습시에 과거의 속성을 반영하기 위한 모멘트 항이 추가된 학습기법이다. 이는 최적해로의 수렴에 따른 발전을 억제하여 그 수렴성능을 좀더 개선시키는 모멘텀의 장점을 그대로 살리기 위함이다. 제안된 학습알고리즘을 이용한 신경망을 128$\times$128 픽셀의 Lenna와 256$\times$128 픽셀의 차량 번호판 영상들을 대상으로 시뮬레이션 한 결과, 제안된 학습알고리즘이 기존의 비선형 주요성분 분석을 위한 신경망이나 선형속성을 가지는 역전파 알고리즘을 이용한 신경망보다 더욱 우수한 수렴 성능과 특징추출 성능이 있음을 확인하였다.

  • PDF

Fault Diagnosis of Induction Motor based on PCA and Nonlinear Classifier (PCA와 비선형분류기에 기반을 둔 유도전동기의 고장진단)

  • Lee Dae-Jong;Park Jang-Hwan;Chun Myung-Geurl
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.444-447
    • /
    • 2005
  • 본 논문에서는, 주성분분석기법과 다층신경망에 기반을 둔 유도전동기의 고장진단기법을 제안하고자 한다. 입력의 수가 많을 경우 다층신경망만을 이용하여 분류하는 데는 한계가 있다. 이러한 문제점을 해결하기 위해 주성분분석기법에 의해 입력특징의 수를 축약한 후, 비선형분류기인 다층신경망을 적용하였다. 또한, 주성분 분석기법에 추출된 특징벡터가 고장상태별로 비선형성특성을 보일 경우 기존의 거리척도 기반에 의한 분류방법으로는 정확한 진단을 하는데 어려움이 있다. 이를 위해 비선형 분류기인 MLP를 적용함으로써 효과적인 고장진단을 하고자 한다. 제안된 기법은 다양한 실험을 통해 기존의 선형분류기에 비해 우수한 결과를 보임을 나타내고자 한다.

  • PDF

Nonlinear Character Segmentation and Recognition Using Topographic Features in Hangul String Images (한글 문자열 영상의 지형적 특징을 이용한 비선형 문자 분할 및 인식)

  • Lee, Dong-June;Lee, Seong-Whan
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.201-206
    • /
    • 1994
  • 문서 인식 시스템의 성능을 저하시키는 가장 큰 원인 중의 하나로 문자 분할 오류를 들 수 있는데 보다 우수한 성능의 문서 인식 시스템 개발을 위해서는 정확한 문자 분할 방법이 절실히 요구된다. 기존의 문자 분할에 관한 연구들은 이진 영상을 대상으로 함으로써 접촉되거나 겹치는 문자의 경계 부분에서 문자 분할에 유용한 정보들을 잃어 문자 분할 오류를 초래할 수 있다. 하지만 명도 영상을 분석해 보면 문자의 접촉 부분에서 주로 나타나는 지형적 특징이 있으며, 문자 경계에서 명도값이 변하는 것을 관찰할 수 있는데 이와같은 명도 영상의 정보를 사용하면 보다 효과적으로 문자를 분할할 수 있을 것으로 판단된다. 본 연구에서는 이러한 점에 착안하여 명도 영상으로부터 지형적 특징을 추출하고 다단계 그래프 탐색 방법을 이용하여 명도값을 추적함으로써 비선형 문자 경계를 찾는 새로운 문자 분할 방법을 제안한다. 제안된 방법은 명도 문자열 영상을 입력으로 받아 명도 영상의 투영값과 명도 영상으로부터 추출된 지형적 특성을 이용하여 문자 분할 영역을 결정하고 문자 분할 영역내에서 다단계 그래프 탐색에 의한 비선형 문자 분할 경로를 찾는다. 그리고 문자 인식기와 결항하여 최종 문자 분할 위치를 확정하는 인식 결과를 이용한 문자 분할을 수행함으로써 문자 분할 위치 및 문자 인식 결과를 확정한다. 다양한 문서에 대한 실험 결과 제안된 방법이 이진 정보만을 사용하는 방법보다 접촉 혹은 겹친 문자 분할에 매우 효과적임을 알 수 있었다.

  • PDF

Datawise Discriminant Analysis For Feature Extraction (자료별 분류분석(DDA)에 의한 특징추출)

  • Park, Myoung-Soo;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.90-95
    • /
    • 2009
  • This paper presents a new feature extraction algorithm which can deal with the problems of linear discriminant analysis, widely used for linear dimensionality reduction. The scatter matrices included in linear discriminant analysis are defined by the distances between each datum and its class mean, and those between class means and mean of whole data. Use of these scatter matrices can cause computational problems and the limitation on the number of features. In addition, these definition assumes that the data distribution is unimodal and normal, for the cases not satisfying this assumption the appropriate features are not achieved. In this paper we define a new scatter matrix which is based on the differently weighted distances between individual data, and presents a feature extraction algorithm using this scatter matrix. With this new method. the mentioned problems of linear discriminant analysis can be avoided, and the features appropriate for discriminating data can be achieved. The performance of this new method is shown by experiments.

Recognition of Handwritten Numerals Based on the Direction Angle Feature (방향각 특징 기반의 필기 숫자 인식)

  • Lee, Sang-Ho;Kim, Ho-Yon;Lim, Kil-Taek;Nam, Yun-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.381-384
    • /
    • 2002
  • 특징 추출은 입력 데이터를 인식이 더 잘 될 수 있도록 변환된 영역의 특징 벡터로 변환하는 과정으로 볼 수 있다. 특징벡터가 갖추어야 할 주요 특성은 손실되는 정보량이 가능한 적어야 된다는 것이다. 또한, 높은 인식률을 얻기 위해서, 동일 클래스에 포함된 특징 벡터의 편차는 적도록 만들어야 한다. 본 논문에서는, 방향각 누적 특징을 기반으로 개발된 몇 가지 새로운 특징을 필기 숫자 인식에 적용하였다. 특징을 추출하기 위하여 입력된 이진 영상의 비선형 정규화, 영상의 크기에 의한 특징 정규화, 영상의 전경 영역에 의한 특징 정규화 등의 여러 가지 방법이 적용되었다. 실제 우편물에서 추출된 필기 숫자 데이터베이스를 실험에 사용하였으며, 제안된 방법이 필기 숫자 인식에 효과적으로 적용될 수 있다는 것을 결과에서 보여주고 있다.

  • PDF

Recognition of Korean Text in Outdoor Signboard Images Using Directional Feature and Fisher Measure (방향성분 특징과 Fisher Measure를 이용한 간판영상 한글인식)

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jung;Lee, Myung-Eun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.239-246
    • /
    • 2009
  • In this paper, we propose a Korean character recognition method from outboard signboard images. We have chosen 808 classes of Korean characters by an analysis of frequencies of appearance in a dictionary of signboard names. The proposed method mainly consists of three steps: feature extraction, rough classification, and coarse classification. The first step is to extract a nonlinear directional segments feature, which is immune to the distortion of character shapes. The second step computes an ordered set of 10 recognition candidates using a minimum distance classifier. The last step reorders the recognition candidates using a Fisher discriminant measure. As experimental results, the recognition accuracy is 80.45% for the first choice, and 93.51% for the top five choices.

Modified Kernel PCA Applied To Classification Problem (수정된 커널 주성분 분석 기법의 분류 문제에의 적용)

  • Kim, Byung-Joo;Sim, Joo-Yong;Hwang, Chang-Ha;Kim, Il-Kon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.243-248
    • /
    • 2003
  • An incremental kernel principal component analysis (IKPCA) is proposed for the nonlinear feature extraction from the data. The problem of batch kernel principal component analysis (KPCA) is that the computation becomes prohibitive when the data set is large. Another problem is that, in order to update the eigenvectors with another data, the whole eigenspace should be recomputed. IKPCA overcomes these problems by incrementally computing eigenspace model and empirical kernel map The IKPCA is more efficient in memory requirement than a batch KPCA and can be easily improved by re-learning the data. In our experiments we show that IKPCA is comparable in performance to a batch KPCA for the feature extraction and classification problem on nonlinear data set.