• 제목/요약/키워드: 비선형 특징 추출

검색결과 122건 처리시간 0.028초

비선형 특징추출을 위한 신경망의 학습성능 개선 (Improvement on Learning Performance of Neural Networks for Extracting Nonlinear Features)

  • 조용현;윤중환;성주원
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.77-80
    • /
    • 2000
  • 본 논문에서는 새로운 학습알고리즘의 비선형 주요성분분석 신경망을 이용한 데이터의 효율적인 특징추출에 대하여 제안하였다. 제안된 학습알고리즘에서는 모멘트와 동적터널링을 조합하여 이용함으로써 최적해로의 수렴에 따른 발진을 억제하고 빠른 수렴속도로 전역최적해에 수렴되도록 학습시킬 수 있다. 제안된 학습알고리즘을 이용하여 128$\times$128 픽셀의 얼굴영상과 256$\times$128 픽셀의 자동차번호판 영상을 대상으로 시뮬레이션 한 결과, 기울기하강의 학습알고리즘을 이용한 기존 비선형 주요성분분석 신경망보다 우수한 수렴성능과 특징추출성능이 있음을 확인 할 수 있었다.

  • PDF

회귀문제를 위한 비선형 특징 추출 방법 (Nonlinear feature extraction for regression problems)

  • 김성민;곽노준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 추계학술대회
    • /
    • pp.86-88
    • /
    • 2010
  • 본 논문에서는 회귀문제를 위한 비선형 특징 추출방법을 제안하고 분류문제에 적용한다. 이 방법은 이미 제안된 선형판별 분석법을 회귀문제에 적용한 회귀선형판별분석법(Linear Discriminant Analysis for regression:LDAr)을 비선형 문제에 대해 확장한 것이다. 본 논문에서는 이를 위해 커널함수를 이용하여 비선형 문제로 확장하였다. 기본적인 아이디어는 입력 특징 공간을 커널 함수를 이용하여 새로운 고차원의 특징 공간으로 확장을 한 후, 샘플 간의 거리가 큰 것과 작은 것의 비율을 최대화하는 것이다. 일반적으로 얼굴 인식과 같은 응용 분야에서 얼굴의 크기, 회전과 같은 것들은 회귀문제에 있어서 비선형적이며 복잡한 문제로 인식되고 있다. 본 논문에서는 회귀 문제에 대한 간단한 실험을 수행하였으며 회귀선형판별분석법(LDAr)을 이용한 결과보다 향상된 결과를 얻을 수 있었다.

  • PDF

클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출 (Nonlinear Feature Extraction using Class-augmented Kernel PCA)

  • 박명수;오상록
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.7-12
    • /
    • 2011
  • 본 논문에서는 자료패턴을 분류하기에 적합한 특징을 추출하는 방법인, 클래스가 부가된 커널 주성분분석(class-augmented kernel principal component analysis)를 새로이 제안하였다. 특징추출에 널리 이용되는 부분공간 기법 중, 최근 제안된 클래스가 부가된 주성분분석(class-augmented principal component analysis)은 패턴 분류를 위한 특징을 추출하기 위해 이용되는 선형분류분석(linear discriminant analysis)등에 비해 정확한 특징을 계산상의 문제 없이 추출할 수 있는 기법이다. 그러나, 추출되는 특징은 입력의 선형조합으로 제한되어 자료에 따라 적절한 특징을 추출하기 어려운 경우가 발생한다. 이를 해결하기 위하여 클래스가 부가된 주성분분석에 커널 트릭을 적용하여 비선형 특징을 추출할 수 있는 새로운 부분공간 기법으로 확장하고, 실험을 통하여 성능을 평가하였다.

비선형 확산 기법을 이용한 항공 영상에서의 강인한 직선 특징 추출 기법 (Robust Extraction of Linear Feature in Aerial Image Using Nonlinear Diffusion)

  • 장주용;박인규;이경무;이상욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.399-402
    • /
    • 2001
  • 본 논문에서는 항공 영상에서 직선 성분을 강건하게 추출하기 위한 새로운 영상 필터링 기법을 제안한다. 제안하는 기법은 지상 구조물의 추출에 유용한 직선 특징을 이루는 에지와 비직선 특징을 이루는 에지의 대비도를 증가시키기 위하여 비선형, 비등방 확산 기법 [2]을 영상에 적응적으로 적용한다. 이를 위하여 확산 매개변수를 제안하는 새로운 직선성 척도로 설정하고 영상의 각 점에서의 직선성 값에 따라 적응적으로 확산을 시킴으로써 확산 과정에서 직선 특징을 잘 보존하고 비직선 특징을 효과적으로 제거한다. 본 논문에서는 직선성 척도로서 에지 체인 위의 점들의 방향성 엔트로피를 제안하고 다양한 영상에 대한 실험을 통해서 엔트로피 척도가 영상에서의 직선 특징을 추출하는데 효율적임을 보인다.

  • PDF

인간시각 인식특성을 지닌 효율적 비선형 스케치 특징추출 필터 (Effective Nonlinear Filters with Visual Perception Characteristics for Extracting Sketch Features)

  • 조성목;조옥래
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.139-145
    • /
    • 2006
  • 디지털 영상에서의 특징점 추출 기술은 로봇비전, 의료영상 진단시스템 및 비디오 전송과 같은 분야 등에서 많이 응용되고 있다. 디지털 영상에서 특징점을 추출하는 방법에는 비선형 그래디언트, 비선형 라프라시안, 엔트로피와 같은 필터들이 있다. 그런데 인간의 시각에서 영상의 특징이 형성되는 과정을 살펴보면, 밝은 영역보다는 어두운 영역에서의 특징에 더 민감한 특성을 가지고 있으므로 기존의 필터로써 특징점을 추출하는데 효과적이지 못하다. 본 논문에서는 국부영역의 밝기를 고려하는 특징점 추출 필터들을 제안한다. 이들 필터들은 연산이 간단하여 매우 신속하게 특징점을 추출할 수 있으며, 국부적인 밝기를 고려하지만 기존의 엔트로피 연산자가 지닌 단점을 극복하여 어두운 영역에서의 미세한 밝기 변화에는 강건한 특성을 가지는 특성을 지닌다. 실험결과 다양한 밝기변화와 국부영역에 걸쳐 매우 뛰어난 특징점 추출결과를 나타내었다.

  • PDF

조합형 학습알고리즘의 신경망을 이용한 데이터의 효율적인 특징추출 (An Efficient Extraction of Data Feature By Using Neural Networks of Hybrid Learning Algorithm)

  • 조용현;윤중환;박용수
    • 정보처리학회논문지B
    • /
    • 제8B권2호
    • /
    • pp.130-136
    • /
    • 2001
  • 본 논문에서는 새로운 학습알고리즘의 비선형 주요성분분석 신경망을 이용한 영상데이터의 효율적인 특징추출에 대하여 제안한다. 제안된 학습알고리즘에서는 최적해로 수렴하는 과정에서 발생할 수도 있는 진동을 억제하여 빠른 속도의 수렴이 가능하도록 하기 위해 모멘트를 이용하였고, 국소최적해를 만났을 때 이를 벗어난 전역최적해로의 수렴을 위한 새로운 연결가중치의 설정을 위하여 동적터널링을 이용함으로써 빠른 수렴속도로 전역최적해에 수렴되도록 학습시킬 수 있다. 제안된 학습알고리즘을 이용한 신경망을 256$\times$256 픽셀의 간암영상과 128$\times$128 픽셀의 얼굴영상을 대상으로 실험한 결과, 기울기하강의 학습알고리즘을 이용한 기존 비선형 주요성분분석 신경망보다 우수한 수렴성능과 특징추출성능이 있음을 확인 할 수 있었다.

  • PDF

비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법 (On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.361-368
    • /
    • 2004
  • 본 논문에서는 온라인 학습 자료의 비선형 특징(feature) 추출을 위한 새로운 온라인 비선형 주성분분석(OL-NPCA : On-line Nonlinear Principal Component Analysis) 기법을 제안한다. 비선형 특징 추출을 위한 대표적인 방법으로 커널 주성분방법(Kernel PCA)이 사용되고 있는데 기존의 커널 주성분 분석 방법은 다음과 같은 단점이 있다. 첫째 커널 주성분 분석 방법을 N 개의 학습 자료에 적용할 때 N${\times}$N크기의 커널 행렬의 저장 및 고유벡터를 계산하여야 하는데, N의 크기가 큰 경우에는 수행에 문제가 된다. 두 번째 문제는 새로운 학습 자료의 추가에 의한 고유공간을 새로 계산해야 하는 단점이 있다. OL-NPCA는 이러한 문제점들을 점진적인 고유공간 갱신 기법과 특징 사상 함수에 의해 해결하였다. Toy 데이타와 대용량 데이타에 대한 실험을 통해 OL-NPCA는 다음과 같은 장점을 나타낸다. 첫째 메모리 요구량에 있어 기존의 커널 주성분분석 방법에 비해 상당히 효율적이다. 두 번째 수행 성능에 있어 커널 주성분 분석과 유사한 성능을 나타내었다. 또한 제안된 OL-NPCA 방법은 재학습에 의해 쉽게 성능이 항상 되는 장점을 가지고 있다.

비선형 반복 패턴과 스펙트럼 분석을 이용한 집중-비집중 분류기의 성능 평가 (Performance Evaluation of Attention-inattetion Classifiers using Non-linear Recurrence Pattern and Spectrum Analysis)

  • 이지은;유선국;이병채
    • 감성과학
    • /
    • 제16권3호
    • /
    • pp.409-416
    • /
    • 2013
  • 집중은 관련된 사건을 선택적으로 주의하고, 관련 없는 사건을 무시하는 인간의 중요한 인지 기능중의 하나이다. 인간의 집중 능력을 관리 이용하는 컴퓨터 기반 장치에 있어서 집중과 비집중 상태를 구분하는 것은 필수적으로 요구되는 조건이다. 본 논문에서는, 뇌파신호로부터 분류기의 입력으로 사용되는 특징을 효율적으로 추출하기 위하여 비선형 반복 패턴 분석기법과 스펙트럼 분석 기법을 새로이 결합하였고(13개 특징 추출), 서포트벡터머신, 역전파 알고리즘, 선형분리, 로지스틱 회귀 분류 기반 분류기들을 포함하는 집중-비집중 분류기들의 성능을 분석하였다. 그중에서 81 %의 정확도를 보이는 서포트벡터머신 분류기가 가장 좋은 성능을 보였다. 또한 스펙트럼 분석으로 추출한 특징만을 사용하였을 경우(76 % 정확도)가 비선형 분석 방법으로 추출한 특징만을 사용했을 경우(67 % 정확도)보다 좀 더 우수한 성능을 보였다. 비선형-스펙트럼 분석법을 복합 적용한 서포트벡터머신 분류기가 추후 집중 관련 장비 설계에 있어서 효율적으로 적용될 수 있을 것이다.

  • PDF

임베디드 생체인식 시스템에서 특징 추출 (Feature Extraction on Embedded Biometric Authentication System)

  • 김병주;김일곤
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.298-300
    • /
    • 2006
  • 정보화 사회의 진행과 더불어 최근 스마트카드(smart card) 시스템을 비롯한 임베디드(embedded) 시스템의 사용이 활발해 짐에 따라 위/변조나 도용에 강건한 인증 시스템의 필요성이 그 어느 때 보다도 높아지고 있다. 그러나 카드 내부의 메모리 크기 및 프로세스의 처리 능력은 매우 제한적이어서 일반 컴퓨터 환경에서의 인증 알고리즘이 수행되지 않을 수 있다. 따라서 적은 메모리와 제한적 처리 능력 하에서 동작 가능한 생체인중 알고리즘의 개발이 필요하다. 본 논문에서는 임베디드 생체인식 시스템을 위한 특징(feature) 추출을 위한 새로운 기법을 제안하였다. 제안된 기법은 다음과 같은 의미를 가진다. 첫째 비선형 자료의 특징 추출 성능에서는 제안된 방법이 기존의 Kernel PCA와 유사한 성능을 나타내었다. 둘째 기존의 비선형 추출 기법에 비해 메모리 사용면에서 효율적이다. 특히 제안된 방법은 학습 자료의 개수 N이 클 경우에는 매우 유용하다.

  • PDF

대용량 문서분류에서의 비선형 주성분 분석을 이용한 특징 추출 (Feature Selection with Non-linear PCA in Text Categorization)

  • 신형주;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.146-148
    • /
    • 1999
  • 문서분류의 문제점 중의 하나는 사용하는 데이터의 차원이 매우 크다는 것이다. 그러므로 문서에서 필요한 단어만을 자동적으로 추출하여 문서데이터의 차원을 축소하는 작업이 문서분류에서는 필수적이다. DF(Document Frequency)는 문서의 차원축소의 대표적인 통계적 방법 중 하나인데, 본 논문에서는 문서의 차원축소에 DF와 주성분 분석(PCA)을 비교하여 주성분 분석이 문서의 차원축소에 적합함을 실험적으로 보인다. 그리고 비선형 주성분 분석(nonlinear PCA) 방법 중 locally linear PCA와 kenel PCA를 적용하여 비선형 주성분 분석을 이용하여 문서의 차원을 줄이는 것이 선형 주성분 분석을 이용하는 것 보다 문서분류에 더 적합함을 실험적으로 보인다.

  • PDF